Publications by authors named "Manuel Antuch"

The energetic demands of modern society for clean energy vectors, such as H, have caused a surge in research associated with homogeneous and immobilized electrocatalysts that may replace Pt. In particular, clathrochelates have shown excellent electrocatalytic properties for the hydrogen evolution reaction (HER). However, the actual mechanism for the HER catalyzed by these -metal complexes remains an open debate, which may be addressed via Operando spectroelectrochemistry.

View Article and Find Full Text PDF

Combined experimental Fe Mössbauer and theoretical DFT study of a series of iron(II)-centered (pseudo)macrobicyclic analogs and homologs was performed. The field strength of the corresponding (pseudo)encapsulating ligand was found to affect both the spin state of a caged iron(II) ion and the electron density at its nucleus. In a row of the iron(II) tris-dioximates, passing from the non-macrocyclic complex to its monocapped pseudomacrobicyclic analog caused an increase both in the ligand field strength and in the electron density at the Fe ion, and, therefore, a decrease in the isomer shift (IS) value (so-called "semiclathrochelate effect").

View Article and Find Full Text PDF

The pollution caused by heavy metals (HMs) may occur through both natural processes and anthropogenic activities and is found in complex media. The purpose of this review is to summarize the state-of-art of fluorescent CDs and the sensing applications in a systematic manner. This review intends to provide clues on the origin on the observed selectivity in chemiluminiscence sensors, which was until now a stated but unaddressed question, and still remains open for debate.

View Article and Find Full Text PDF

Green low-sensitivity energetic materials which can be stored under laboratory conditions and do not ignite spontaneously at room temperature are currently of high relevance due to their multiple energy applications in propulsion, pyrotechnics or civil engineering. In this context, we report a gram-scale synthesis of copper oxide (Cu2O) nanoparticles interfaced at the surface of 2D aluminum (Al) nanosheets. This synthesis is mild, cheap, and environmentally friendly, allowing us to obtain a stable and homogeneous product with high crystallinity.

View Article and Find Full Text PDF

Nanomaterials have revolutionized the sensing and biosensing fields, with the development of more sensitive and selective devices for multiple applications. Gold, silver and iron oxide nanoparticles have played a particularly major role in this development. In this review, we provide a general overview of the synthesis and characteristics of gold, silver and iron oxide nanoparticles, along with the main strategies for their surface functionalization with ligands and biomolecules.

View Article and Find Full Text PDF

In this work, efficient methanol oxidation fuel cell catalysts with excellent stability in alkaline media have been synthesized by including transition metals to the layered double hydroxide (LDH) nanohybrids. The nanohybrids CoCr-LDH, NiCoCr-LDH and NiCr-LDH were prepared by co-precipitation and their physicochemical characteristics were investigated using TEM, XRD, IR and BET analyses. The nanohybrid CoCr-LDH is found to have the highest surface area of 179.

View Article and Find Full Text PDF

The hydrogen evolution reaction (HER) has attracted much attention within the scientific community because of increasing demands of modern society for clean and renewable energy sources. Molecular complexes of 3d-transition metals, such as cobalt, hold potential to replace platinum for the HER in acidic media. Among these, cage complexes such as tris-glyoximate metal clathrochelates, have demonstrated promising catalytic properties towards the HER.

View Article and Find Full Text PDF

Oxidative stress resulting from iron and reactive oxygen species (ROS) homeostasis breakdown has been implicated in several diseases. Therefore, molecules capable of binding iron and/or scavenging ROS may be reasonable strategies for protecting cells. Rapanone is a naturally occurring hydroxyl-benzoquinone with a privileged chelating structure.

View Article and Find Full Text PDF