Publications by authors named "Manuel A V Ribeiro da Silva"

The need to transition from fossil fuels to renewables arises from factors such as depletion, price fluctuations, and environmental considerations. Lignocellulosic biomass, being abundant, and quickly renewable, and not interfering with food supplies, offers a standout alternative for chemical production. This paper explores the energetic characteristics of two derivatives of furfural-a versatile chemical obtained from biomass with great potential for commercial sustainable chemical and fuel production.

View Article and Find Full Text PDF

Amino acids play fundamental roles both as building blocks of proteins and as intermediates in metabolism. Proline, one of the 20 natural amino acids, has a primordial function in enzymes, peptide hormones, and proteins. The energetic characterization of these molecules provides information concerning stability and reactivity and has great importance in understanding the activity and behavior of larger molecules containing these structures as fragments.

View Article and Find Full Text PDF

An enthalpic value for the N-methyllactam/O-methyllactim isomerization, in the gaseous phase, is reported in this work for the conversion between 2,4-dimethoxypyrimidine and 1,3-dimethyluracil. For this purpose, the enthalpy of formation of 2,4-dimethoxypyrimidine, in the gaseous phase, was obtained experimentally combining results from combustion calorimetry and Calvet microcalorimetry, and the enthalpy of formation of 1,3-dimethyluracil, in the gaseous phase, reported previously in the literature, is also discussed. The enthalpy of hydrogenation of 1,3-dimethyluracil is compared with the enthalpy of hydrogenation of uracil and interpreted in terms of aromaticity, considering the influence of the hyperconjugation and the hindrance of the solvation of the ring by the methyl groups.

View Article and Find Full Text PDF

4(3H)-Pyrimidinone is observed in nature in equilibrium with other tautomeric forms, mimicking the tautomeric equilibrium in pyrimidine nucleobases. In this work, the enthalpy of formation in the gaseous phase of 4(3H)-pyrimidinone was derived from the combination of the enthalpy of formation in the crystalline phase, obtained by static bomb combustion calorimetry, and the enthalpy of sublimation, obtained by Knudsen effusion. The gaseous phase enthalpy of formation of 4(3H)-pyrimidinone was interpreted in terms of isodesmic reactions that consider the enthalpic effects of hydroxypyridines and pyrimidine.

View Article and Find Full Text PDF

The relationships among structural and thermodynamic properties of 2-, 3-, and 4-chlorobenzonitrile were investigated, in the present work, using several experimental techniques (Knudsen effusion, differential scanning calorimetry, and combustion calorimetry) and computational studies. The CN···Cl intermolecular interactions are weaker in 2-chlorobenzonitrile, reflecting a lower enthalpy of sublimation. The two polymorphic forms of 4-chlorobenzonitrile were observed by differential scanning calorimetry and interpreted in terms of the strength of CN···Cl intermolecular interactions.

View Article and Find Full Text PDF

In this work is investigated why the entrance of a nitrogen atom in the ring of cis-2-hydroxypyridine and 2-pyridinone, resulting in cis-4-hydroxypyrimidine and 4(3H)-pyrimidinone, respectively, shifts the tautomeric equilibrium from the hydroxyl form, in the pyridine derivative, to the ketonic form, in the pyrimidine derivative. The conclusions obtained for these model systems allow us to understand how to control the gaseous-phase keto-enol tautomeric equilibrium in nitrogen heterocyclic rings and justify the tautomeric preference in pyrimidine nucleobases. The experimental and computational energetics of tautomeric equilibrium were interpreted in terms of the aromaticity, intramolecular hydrogen bonds, and electronic delocalization, evaluated using nucleus independent chemical shifts, quantum theory of atoms in molecules, natural bond orbital analysis, and the thermodynamic changes of appropriate reactions.

View Article and Find Full Text PDF

The enthalpy of hydrogenation of uracil was derived from the experimental enthalpies of formation, in the gaseous phase, of uracil and 5,6-dihydrouracil, in order to analyze its aromaticity. The enthalpy of formation of 5,6-dihydrouracil was obtained from combustion calorimetry, Knudsen effusion technique and Calvet microcalorimetry results. High-level computational methods were tested for the enthalpy of hydrogenation of uracil, but only with G3 was possible to obtain results in agreement with the experimental ones.

View Article and Find Full Text PDF

The pyrrole subunit plays an important role in material science as the building block of polypyrroles, an important representative class of conducting polymers, which found widely applications in the area of new materials due to their chemical, thermal, and electrical properties associated with their easiness and low cost of production, making them especially promising for commercial applications. The energetic characterization of this kind of molecules provides information concerning stability, reactivity, and biodegrability of chemical compounds in environment being, for example, helpful in choosing the most adequate method for their elimination by converting the waste into harmless compounds or even decreasing the production of toxic substances in industrial processes. This work reports a combination of calorimetric and computational determinations of several alkyl pyrrolecarboxylates (alkyl = methyl or ethyl) whose main purpose is the calculation of their standard (p° = 0.

View Article and Find Full Text PDF

The present work reports an energetic and structural study of 2-fluoro-, 3-fluoro-, and 4-fluorobenzonitrile. The standard molar enthalpies of formation, in the condensed phase, of the three isomers were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K.

View Article and Find Full Text PDF

The present paper reports an experimental calorimetric study of 2-pyrrolecarboxaldehyde and 1-methyl-2-pyrrolecarboxaldehyde, which aims to determine their standard (p° = 0.1 MPa) molar enthalpies of formation, in the gaseous phase, at T = 298.15 K.

View Article and Find Full Text PDF

Calorimetric measurements are expected to provide useful data regarding the relative stability of α- versus β-amino acid isomers, which, in turn, may help us to understand why nature chose α- instead of β-amino acids for the formation of the biomolecules that are essential constituents of life on earth. The present study is a combination of the experimental determination of the enthalpy of formation of N-benzyl-β-alanine, and high-level ab initio calculations of its molecular structure. The experimentally determined standard molar enthalpy of formation of N-benzyl-β-alanine in gaseous phase at T = 298.

View Article and Find Full Text PDF

Thermodynamic properties of 3- and 4-phenoxyphenol have been determined by using a combination of calorimetric and effusion techniques as well as by high-level ab initio molecular orbital calculations. The standard (p° = 0.1 MPa) molar enthalpies of formation in the condensed and gas states, Δ(f)H(m)°(cr or l) and Δ(f)H(m)°(g), at T = 298.

View Article and Find Full Text PDF

In the present work, the values of the standard (p(o) = 0.1 MPa) molar enthalpies of formation, in the gaseous phase, at T = 298.15 K, of 1,2-diaminobenzene, 1,3-diaminobenzene, and 1,4-diaminobenzene are reported as 86.

View Article and Find Full Text PDF

This paper reports an experimental and theoretical study of the gas phase standard (p° = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, of α-alanine (DL) and β-alanine.

View Article and Find Full Text PDF

Thermochemical and thermodynamic properties of 2,5-dimethyl-1-phenylpyrrole and 2,5-dimethyl-1-(4-nitrophenyl)pyrrole have been determined by using a combination of calorimetric and effusion techniques as well as high-level ab initio molecular orbital calculations. The standard (p° = 0.1 MPa) molar enthalpies of formation, in the crystalline state, Δ(f)H(m)°(cr), at T = 298.

View Article and Find Full Text PDF

This work reports the experimental and computational thermochemical study performed on three difluorinated nitrobenzene isomers: 2,4-difluoronitrobenzene (2,4-DFNB), 2,5-difluoronitrobenzene (2,5-DFNB), and 3,4-difluoronitrobenzene (3,4-DFNB). The standard (p° = 0.1 MPa) molar enthalpies of formation in the liquid phase of these compounds were derived from the standard molar energies of combustion, in oxygen, at T = 298.

View Article and Find Full Text PDF

This paper reports an experimental and theoretical study of the standard (p(degrees) = 0.1 MPa) molar enthalpies of formation at T = 298.15 K of the sulfur-containing amino acids l-cysteine [CAS 52-90-4] and l-cystine [CAS 56-89-3].

View Article and Find Full Text PDF

A computational study of the structural and thermochemical properties of N-phenyl (open) and N-alkyl (cyclic) ureas, through the use of M05-2X and B3LYP density functional theory calculations has been carried out. The consistency of the literature experimental results has been confirmed, and using mainly isodesmic reactions, the unknown Delta(f)H(0)(g) of the other urea derivatives were estimated. The experimental results together with the theoretical information have permitted the study of the effect of phenyl, p- and m-chlorophenyl, alkyl, and carbonyl substitutions on the thermodynamical stability of urea and its cyclic derivatives.

View Article and Find Full Text PDF

The present work reports the thermodynamic study performed on three monofluorinated nitrobenzene derivatives by a combination of experimental techniques and computational approaches. The standard (p degrees = 0.1 MPa) molar enthalpies of formation in the liquid phase of the three isomers of fluoronitrobenzene were derived from the standard molar energies of combustion, in oxygen, at T = 298.

View Article and Find Full Text PDF

This work reports the enthalpies of formation in the condensed and gas phases of 2-acetyl-1-methylpyrrole and 3-acetyl-1-methylpyrrole, derived from the standard (p(o) = 0.1 MPa) molar enthalpies of combustion, in oxygen, Delta(c)H(m)(o), measured by static bomb combustion calorimetry and the standard molar enthalpies of vaporization, Delta(l)(g)H(m)(o), at T = 298.15 K, obtained by high-temperature Calvet microcalorimetry.

View Article and Find Full Text PDF

The relative stabilities of 2,2'- and 3,3'-bithiophenes were evaluated by experimental thermochemistry and the results compared with data obtained from state of the art calculations, which were also extended to 2,3'-bithiophene. The standard (p degrees = 0.1 MPa) molar enthalpies of formation of crystalline 2,2'-bithiophene and 3,3'-bithiophene were calculated from the standard molar energies of combustion, in oxygen, to yield CO(2) (g) and H(2)SO(4) x 115 H(2)O, measured by rotating-bomb combustion calorimetry at T = 298.

View Article and Find Full Text PDF

This paper reports a combined thermochemical experimental and computational study of 2-pyrrolecarboxylic acid and 1-methyl-2-pyrrolecarboxylic acid. Static bomb combustion calorimetry and Knudsen mass-loss effusion technique were used to determine the standard (p degrees = 0.1 MPa) molar enthalpies of combustion, Delta(c)H(m) degrees, and sublimation, Delta(cr)(g)H(m) degrees, respectively, from which the standard (p degrees = 0.

View Article and Find Full Text PDF

A combined experimental and computational study on the thermochemistry of 2- and 3-acetylpyrroles was performed. The enthalpies of combustion and sublimation were measured by static bomb combustion calorimetry and Knudsen effusion mass-loss technique, respectively, and the standard (p(o) = 0.1 MPa) molar enthalpies of formation, in the gaseous phase, at T = 298.

View Article and Find Full Text PDF

Static bomb calorimetry, Calvet microcalorimetry and the Knudsen effusion technique were used to determine the standard molar enthalpy of formation in the gas phase, at T = 298.15 K, of the indole and indoline heterocyclic compounds. The values obtained were 164.

View Article and Find Full Text PDF

The standard (p degrees = 0.1 MPa) molar enthalpies of formation, Delta(f)H(m)degrees, of crystalline 2-, 3- and 4-chlorobenzophenone and 4,4'-dichlorobenzophenone were derived from the standard molar energies of combustion, Delta(c)U(m)degrees, in oxygen, to yield CO(2)(g), N(2)(g), and HCl x 600H(2)O(l), at T = 298.15 K, measured by rotating bomb combustion calorimetry.

View Article and Find Full Text PDF