Background: Helicobacter pylori infection induces cellular phenotypes relevant for cancer progression, namely cell motility and invasion. We hypothesized that the extracellular matrix (ECM) could be involved in these deleterious effects.
Methods: Microarrays were used to uncover ECM interactors in cells infected with H.
Neurosci Lett
November 2017
Alcohol addiction is a chronic, relapsing and progressive brain disease with serious consequences for health. Compulsive use of alcohol is associated with the capacity to change brain structures involved with the reward pathway, such as ventral striatum. Recent evidence suggests a role of chromatin remodeling in the pathophysiology of alcohol dependence and addictive-like behaviors.
View Article and Find Full Text PDFIn innate immune responses, induction of type-I interferons (IFNs) prevents virus spreading while viral replication is delayed by protein synthesis inhibition. We asked how cells perform these apparently contradictory activities. Using single fibroblast monitoring by flow cytometry and mathematical modeling, we demonstrate that type-I IFN production is linked to cell's ability to enter dsRNA-activated PKR-dependent translational arrest and then overcome this inhibition by decreasing eIF2α phosphorylation through phosphatase 1c cofactor GADD34 (Ppp1r15a) expression.
View Article and Find Full Text PDFGimesia maris and Rubinisphaera brasiliensis are slightly halophilic representatives of the deep-branching phylum Planctomycetes. For osmoadaptation both species accumulated α-glutamate, sucrose, ectoine and hydroxyectoine. A major role was found for ectoine, hydroxyectoine as well as sucrose under hyper-osmotic shock conditions.
View Article and Find Full Text PDFThe ascomycete Candida albicans is a normal resident of the gastrointestinal tract of humans and other warm-blooded animals. It occurs in a broad range of body sites and has high capacity to survive and proliferate in adverse environments with drastic changes in oxygen, carbon dioxide, pH, osmolarity, nutrients, and temperature. Its biology is unique due to flexible reassignment of the leucine CUG codon to serine and synthesis of statistical proteins.
View Article and Find Full Text PDFThe immune system is essential to maintain the mutualistic homeostatic interaction between the host and its micro- and mycobiota. Living as a commensal,Saccharomyces cerevisiaecould potentially shape the immune response in a significant way. We observed thatS.
View Article and Find Full Text PDFHelicobacter pylori colonizes the human stomach and increases the risk for peptic ulcer disease and gastric carcinoma. H. pylori upregulates the expression and activity of several matrix metalloproteinases (MMPs) in cell lines and in the gastric mucosa.
View Article and Find Full Text PDFBackground: Small non-coding RNAs (sncRNAs) are a class of transcripts implicated in several eukaryotic regulatory mechanisms, namely gene silencing and chromatin regulation. Despite significant progress in their identification by next generation sequencing (NGS) we are still far from understanding their full diversity and functional repertoire.
Results: Here we report the identification of tRNA derived fragments (tRFs) by NGS of the sncRNA fraction of zebrafish.
The essential feature of the genetic code is the strict one-to-one correspondence between codons and amino acids. The canonical code consists of three stop codons and 61 sense codons that encode 20% of the amino acid repertoire observed in nature. It was originally designated as immutable and universal due to its conservation in most organisms, but sequencing of genes from the human mitochondrial genomes revealed deviations in codon assignments.
View Article and Find Full Text PDFTranslational errors occur at high rates, and they influence organism viability and the onset of genetic diseases. To investigate how organisms mitigate the deleterious effects of protein synthesis errors during evolution, a mutant yeast strain was engineered to translate a codon ambiguously (mistranslation). It thereby overloads the protein quality-control pathways and disrupts cellular protein homeostasis.
View Article and Find Full Text PDFAutophagy is a key degradative pathway coordinated by external cues, including starvation, oxidative stress, or pathogen detection. Rare are the molecules known to contribute mechanistically to the regulation of autophagy and expressed specifically in particular environmental contexts or in distinct cell types. Here, we unravel the role of RUN and FYVE domain-containing protein 4 (RUFY4) as a positive molecular regulator of macroautophagy in primary dendritic cells (DCs).
View Article and Find Full Text PDFThe maintenance of microbial species in different environmental conditions is associated with adaptive microevolutionary changes that are shown here to occur within the descendants of the same strain in comparison with the commercial reference strain. However, scarce information is available regarding changes that occur among strain descendants during their persistence in nature. Herein we evaluate genome variations among four isolates of the commercial winemaking strain Saccharomyces cerevisiae Zymaflore VL1 that were re-isolated from vineyards surrounding wineries where this strain was applied during several years, in comparison with the commercial reference strain.
View Article and Find Full Text PDFHeterologous protein production is a key technology for biotechnological, health sciences and many other research fields. Various approaches have been developed for its optimization, but the research emphasis has been on optimization of protein yield rather than protein quality. In this study, we have established a workflow for synthetic gene optimization for heterologous protein expression that combines bioinformatics, laboratory experiments, mass spectrometry and statistical analysis.
View Article and Find Full Text PDFMutations in genes that encode tRNAs, aminoacyl-tRNA syntheases, tRNA modifying enzymes and other tRNA interacting partners are associated with neuropathies, cancer, type-II diabetes and hearing loss, but how these mutations cause disease is unclear. We have hypothesized that levels of tRNA decoding error (mistranslation) that do not fully impair embryonic development can accelerate cell degeneration through proteome instability and saturation of the proteostasis network. To test this hypothesis we have induced mistranslation in zebrafish embryos using mutant tRNAs that misincorporate Serine (Ser) at various non-cognate codon sites.
View Article and Find Full Text PDFHormone and neurotransmitter release from vesicles is mediated by regulated exocytosis, where an aqueous channel-like structure, termed a fusion pore, is formed. It was recently shown that second messenger cAMP modulates the fusion pore, but the detailed mechanisms remain elusive. In this study, we asked whether the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are activated by cAMP, are involved in the regulation of unitary exocytic events.
View Article and Find Full Text PDFThe translation of genes into functional proteins involves error. Mistranslation is a known cause of disease, but, surprisingly, recent studies suggest that certain organisms from all domains of life have evolved diverse pathways that increase their tolerance of translational error. Although the reason for these high error rates are not yet clear, evidence suggests that increased mistranslation may have a role in the generation of diversity within the proteome and other adaptive functions.
View Article and Find Full Text PDFTransient global cerebral ischemia induces profound changes in the transcriptome of brain cells, which is partially associated with the induction or repression of genes that influence the ischemic response. However, the mechanisms responsible for the selective vulnerability of hippocampal neurons to global ischemia remain to be clarified. To identify molecular changes elicited by ischemic insults, we subjected hippocampal primary cultures to oxygen-glucose deprivation (OGD), an in vitro model for global ischemia that resulted in delayed neuronal death with an excitotoxic component.
View Article and Find Full Text PDFJ Zoo Wildl Med
March 2014
The objectives of this study were to optimize nested polymerase chain reaction (PCR) for Mycobacterium avium complex and Mycobacterium tuberculosis complex and apply them on samples from parrots. Results were negative for the presence of these Mycobacterium in the samples, and nested PCR was specific, faster, and more sensitive than other tests, thereby justifying its use in antemortem diagnosis.
View Article and Find Full Text PDFBackground: Cobalt has a rare occurrence in nature, but may accumulate in cells to toxic levels. In the present study, we have investigated how the transcription factor Yap1 mediates tolerance to cobalt toxicity.
Methods: Fluorescence microscopy was used to address how cobalt activates Yap1.
Hereditary diffuse gastric cancer (HDGC) syndrome, although rare, is highly penetrant at an early age, and is severe and incurable because of ineffective screening tools and therapy. Approximately 45% of HDGC families carry germline CDH1/E-cadherin alterations, 20% of which are nonsense leading to premature protein truncation. Prophylactic gastrectomy is the only recommended approach for all asymptomatic CDH1 mutation carriers.
View Article and Find Full Text PDFHyperpolarization-activated cyclic nucleotide-gated (HCN) channels play a critical role in a broad range of cell types, but the expression of the various HCN isoforms is still poorly understood. In the present study we have compared the expression of HCN isoforms in rat excitable and non-excitable tissues at both the mRNA and protein levels. Real-time PCR and Western blot analysis revealed distinct expression patterns of the four HCN isoforms in brain, heart, pituitary and kidney, with inconsistent mRNA-protein expression correlation.
View Article and Find Full Text PDFAcetic acid-induced apoptosis in yeast is accompanied by an impairment of the general protein synthesis machinery, yet paradoxically also by the up-regulation of the two isoforms of the heat shock protein 90 (HSP90) chaperone family, Hsc82p and Hsp82p. Herein, we show that impairment of cap-dependent translation initiation induced by acetic acid is caused by the phosphorylation and inactivation of eIF2α by Gcn2p kinase. A microarray analysis of polysome-associated mRNAs engaged in translation in acetic acid challenged cells further revealed that HSP90 mRNAs are over-represented in this polysome fraction suggesting preferential translation of HSP90 upon acetic acid treatment.
View Article and Find Full Text PDF