Front Endocrinol (Lausanne)
August 2022
Introduction: AXA1125 and AXA1957 are novel, orally administered endogenous metabolic modulator compositions, specifically designed to simultaneously support multiple metabolic and fibroinflammatory pathways associated with nonalcoholic fatty liver disease (NAFLD). This study assessed safety, tolerability, and biologic activity of AXA1125 and AXA1957 in NAFLD.
Methods: In this multicenter, 16-week, placebo-controlled, single-blind, randomized clinical study in subjects with NAFLD stratified by type 2 diabetes, AXA1125 24 g, AXA1957 13.
Nonalcoholic steatohepatitis (NASH) is a complex metabolic disease of heterogeneous and multifactorial pathogenesis that may benefit from coordinated multitargeted interventions. Endogenous metabolic modulators (EMMs) encompass a broad set of molecular families, including amino acids and related metabolites and precursors. EMMs often serve as master regulators and signaling agents for metabolic pathways throughout the body and hold the potential to impact a complex metabolic disease like NASH by targeting a multitude of pathologically relevant biologies.
View Article and Find Full Text PDFIntroduction: Late stage clinical trials in non-alcoholic steatohepatitis (NASH) are currently required by the FDA to use liver biopsy as a primary endpoint. The well-reported limitations with biopsy, such as associated risks and sampling error, coupled with patient preference, are driving investigation into non-invasive alternatives. MRI-derived biomarkers proton density fat fraction (PDFF) and iron-corrected T1 mapping (cT1) are gaining traction as emerging alternatives to biopsy for NASH.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
May 2021
Non-alcoholic fatty liver disease (NAFLD) has reached epidemic proportions, affecting an estimated one-quarter of the world's adult population. Multiple organ systems have been implicated in the pathophysiology of NAFLD; however, the role of skeletal muscle has until recently been largely overlooked. A growing body of evidence places skeletal muscle-via its impact on insulin resistance and systemic inflammation-and the muscle-liver axis at the center of the NAFLD pathogenic cascade.
View Article and Find Full Text PDFMultifactorial disease pathophysiology is complex and incompletely addressed by existing targeted pharmacotherapies. Amino acids (AAs) and related metabolites and precursors are a class of endogenous metabolic modulators (EMMs) that have diverse biological functions and, thus, have been explored for decades as potential multifactorial disease treatments. Here, we review the literature on this class of EMMs in disease treatment, with a focus on the emerging clinical studies on AAs and related metabolites and precursors as single- and combination-agents targeted to a single biology.
View Article and Find Full Text PDFNonalcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease and is associated with significant morbidity and mortality worldwide, with a high incidence in Western countries and non-Western countries that have adopted a Western diet. NAFLD is commonly associated with components of the metabolic syndrome, type 2 diabetes mellitus and cardiovascular disease, suggesting a common mechanistic basis. An inability to metabolically handle free fatty acid overload-metabolic inflexibility-constitutes a core node for NAFLD pathogenesis, with resulting lipotoxicity, mitochondrial dysfunction and cellular stress leading to inflammation, apoptosis and fibrogenesis.
View Article and Find Full Text PDFIntroduction: AXA1665 is a novel investigational amino acid (AA) composition specifically designed to impact AA imbalance, ammoniagenesis, and dysregulated anabolic activity associated with cirrhosis.
Methods: This 2-part study examined AXA1665 effects on safety, tolerability, and hepatic/muscle physiology in subjects with Child-Pugh A and B cirrhosis. Part 1 established plasma ammonia and AA concentration baselines with a standardized protein supplement.
Gastroenterol Clin North Am
March 2020
Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis are diseases in their own right as well as modifiable risk factors for cardiovascular disease and type 2 diabetes. With expanding knowledge on NAFLD pathogenesis, insights have been gleaned into molecular targets for pharmacologic and nonpharmacologic approaches. Lifestyle modifications constitute a cornerstone of NAFLD management.
View Article and Find Full Text PDFSkeletal muscle disuse leads to atrophy, declines in muscle function, and metabolic dysfunction that are often slow to recover. Strategies to mitigate these effects would be clinically relevant. In a double-blind randomized-controlled pilot trial, we examined the safety and tolerability as well as the atrophy mitigating effect of a novel amino acid composition (AXA2678), during single limb immobilization.
View Article and Find Full Text PDFUnlabelled: The quantification and variability of skeletal muscle glucose utilization (SMGU) in healthy subjects under basal (low insulin) conditions are poorly known. This information is essential early in clinical drug development to effectively interrogate novel pharmacologic interventions that modulate glucose uptake. The aim of this study was to determine test-retest characteristics and variability of SMGU within and between healthy subjects under basal conditions.
View Article and Find Full Text PDFEndothelial dysfunction leads to lethal vascular complications in diabetes and related metabolic disorders. Here, we demonstrate that de novo lipogenesis, an insulin-dependent process driven by the multifunctional enzyme fatty-acid synthase (FAS), maintains endothelial function by targeting endothelial nitric-oxide synthase (eNOS) to the plasma membrane. In mice with endothelial inactivation of FAS (FASTie mice), eNOS membrane content and activity were decreased.
View Article and Find Full Text PDFFatty acid metabolism is perturbed in atherosclerotic lesions, but whether it affects lesion formation is unknown. To determine whether fatty acid synthesis affects atherosclerosis, we inactivated fatty-acid synthase (FAS) in macrophages of apoE-deficient mice. Serum lipids, body weight, and glucose metabolism were the same in FAS knock-out in macrophages (FASKOM) and control mice, but blood pressure was lower in FASKOM animals.
View Article and Find Full Text PDFThe nuclear receptor PPARalpha is activated by drugs to treat human disorders of lipid metabolism. Its endogenous ligand is unknown. PPARalpha-dependent gene expression is impaired with inactivation of fatty acid synthase (FAS), suggesting that FAS is involved in generation of a PPARalpha ligand.
View Article and Find Full Text PDFObesity promotes insulin resistance and chronic inflammation. Disrupting any of several distinct steps in lipid synthesis decreases adiposity, but it is unclear if this approach coordinately corrects the environment that propagates metabolic disease. We tested the hypothesis that inactivation of FAS in the hypothalamus prevents diet-induced obesity and systemic inflammation.
View Article and Find Full Text PDFInsulin resistance characterizes type 2 diabetes and the metabolic syndrome, disorders associated with an increased risk of death due to macrovascular disease. In the past few decades, research from both the basic science and clinical arenas has enabled evidence-based use of therapeutic modalities such as statins and angiotensin-converting enzyme inhibitors to reduce cardiovascular (CV) mortality in insulin-resistant patients. Recently, promising drugs such as the thiazolidinediones have come under scrutiny for possible deleterious CV effects.
View Article and Find Full Text PDFThe purpose of this study was to delineate potential mechanisms initiating the onset of hepatic steatosis following the cessation of daily physical activity. Four-week-old, hyperphagic/obese Otsuka Long-Evans Tokushima Fatty rats were given access to voluntary running wheels for 16 weeks to prevent the development of hepatic steatosis. The animals were then suddenly transitioned to a sedentary condition as wheels were locked (wheel lock; WL) for 5 h (WL5), 53 h (WL53) or 173 h (WL173).
View Article and Find Full Text PDFObjective: Low birth weight is associated with diabetes in adult life. Accelerated or "catch-up" postnatal growth in response to small birth size is thought to presage disease years later. Whether adult disease is caused by intrauterine beta-cell-specific programming or by altered metabolism associated with catch-up growth is unknown.
View Article and Find Full Text PDFAge-related disease, not aging per se, causes most morbidity in older humans. Here we report that skeletal muscle respiratory uncoupling due to UCP1 expression diminishes age-related disease in three mouse models. In a longevity study, median survival was increased in UCP mice (animals with skeletal muscle-specific UCP1 expression), and lymphoma was detected less frequently in UCP female mice.
View Article and Find Full Text PDFCentral nervous system control of energy balance affects susceptibility to obesity and diabetes, but how fatty acids, malonyl-CoA, and other metabolites act at this site to alter metabolism is poorly understood. Pharmacological inhibition of fatty acid synthase (FAS), rate limiting for de novo lipogenesis, decreases appetite independently of leptin but also promotes weight loss through activities unrelated to FAS inhibition. Here we report that the conditional genetic inactivation of FAS in pancreatic beta cells and hypothalamus produced lean, hypophagic mice with increased physical activity and impaired hypothalamic PPARalpha signaling.
View Article and Find Full Text PDFDe novo lipogenesis is an energy-expensive process whose role in adult mammals is poorly understood. We generated mice with liver-specific inactivation of fatty-acid synthase (FAS), a key lipogenic enzyme. On a zero-fat diet, FASKOL (FAS knockout in liver) mice developed hypoglycemia and fatty liver, which were reversed with dietary fat.
View Article and Find Full Text PDFSurvival of Homo sapiens during evolution was dependent on the procurement of food, which in turn was dependent on physical activity. However, food supply was never consistent. Thus it is contended that the ancient hunter-gatherer had cycles of feast and famine, punctuated with obligate periods of physical activity and rest.
View Article and Find Full Text PDF