We consider the localization of elastic waves in thin elastic structures with spatially varying curvature profiles, using a curved rod and a singly curved shell as concrete examples. Previous studies on related problems have broadly focused on the localization of flexural waves on such structures. Here, using the semiclassical WKB approximation for multicomponent waves, we show that in addition to flexural waves, extensional and shear waves also form localized, bound states around points where the absolute curvature of the structure has a minimum.
View Article and Find Full Text PDFA bar-joint mechanism is a deformable assembly of freely rotating joints connected by stiff bars. Here we develop a formalism to study the equilibration of common bar-joint mechanisms with a thermal bath. When the constraints in a mechanism cease to be linearly independent, singularities can appear in its shape space, which is the part of its configuration space after discarding rigid motions.
View Article and Find Full Text PDFSynchronization is the process of achieving identical dynamics among coupled identical units. If the units are different from each other, their dynamics cannot become identical; yet, after transients, there may emerge a functional relationship between them-a phenomenon termed "generalized synchronization." Here, we show that the concept of transient uncoupling, recently introduced for synchronizing identical units, also supports generalized synchronization among nonidentical chaotic units.
View Article and Find Full Text PDFFinding conditions that support synchronization is a fertile and active area of research with applications across multiple disciplines. Here we present and analyze a scheme for synchronizing chaotic dynamical systems by transiently uncoupling them. Specifically, systems coupled only in a fraction of their state space may synchronize even if fully coupled they do not.
View Article and Find Full Text PDF