The genomes of most plant species are dominated by transposable elements (TEs). Once considered as 'junk DNA', TEs are now known to have a major role in driving genome evolution. Over the last decade, it has become apparent that some stress conditions and other environmental stimuli can drive bursts of activity of certain TE families and consequently new TE insertions.
View Article and Find Full Text PDFEpigenome modulation potentially provides a mechanism for organisms to adapt, within and between generations. However, neither the extent to which this occurs, nor the mechanisms involved are known. Here we investigate DNA methylation variation in Swedish Arabidopsis thaliana accessions grown at two different temperatures.
View Article and Find Full Text PDFDET1 (De-etiolated 1) is a chromatin binding protein involved in developmental regulation in both plants and animals. DET1 is largely restricted to multicellular eukaryotes, and here we report the characterization of a DET1 homolog from the social amoeba Dictyostelium discoideum. As in other species, Dictyostelium DET1 is nuclear localized.
View Article and Find Full Text PDFCold Spring Harb Protoc
March 2010
In recent years, sequence-specific recombination cloning methods such as the Gateway system have become increasingly popular for (over)expressing tagged proteins in high-throughput investigations in many different organisms, including plants. Because of their versatility and ease of use, these methods have gained favor in low- and medium-throughput investigations as well. However, due to the recombination step, the resulting fusion proteins contain long and often highly charged polylinker sequences that can interfere with their physiological function.
View Article and Find Full Text PDFBackground: Recent developments, including the sequencing of a number of plant genomes, have greatly increased the amount of data available to scientists and has enabled high throughput investigations where many genes are investigated simultaneously. To perform these studies, recombinational cloning methods such as the Gateway system have been adapted to plant transformation vectors to facilitate the creation of overexpression, tagging and silencing vectors on a large scale.
Results: Here we present a hybrid cloning strategy which combines advantages of both recombinational and traditional cloning and which is particularly amenable to low-to-medium throughput investigations of protein function using techniques of molecular biochemistry and cell biology.
Cullins are central scaffolding subunits in eukaryotic E3 ligases that facilitate the ubiquitination of target proteins. Arabidopsis contains at least 11 cullin proteins but only a few of them have been assigned biological roles. In this work Arabidopsis cullin 4 is shown to assemble with DDB1, RBX1, DET1 and DDB2 in vitro and in planta.
View Article and Find Full Text PDFCtIP is a transcriptional co-regulator that binds a number of proteins involved in cell cycle control and cell development, such as CtBP (C terminus-binding protein), BRCA1 (breast cancer-associated protein-1), and LMO4 (LIM-only protein-4). The only recognizable structural motifs within CtIP are two putative coiled-coil domains located near the N and C termini of the protein. We now show that the N-terminal coiled coil (residues 45-160), but not the C-terminal coiled coil, mediates homodimerization of CtIP in mammalian 293T cells.
View Article and Find Full Text PDF