Publications by authors named "Manu Anantpadma"

The Ebola filovirus (EBOV) poses a serious threat to global health and national security. Nanobodies, a type of single-domain antibody, have demonstrated promising therapeutic potential. We identified two anti-EBOV nanobodies, Nanosota-EB1 and Nanosota-EB2, which specifically target the EBOV glycoprotein (GP).

View Article and Find Full Text PDF

Ebola and Marburg (EBOV and MARV) filoviral infections lead to fatal hemorrhagic fevers and have caused over 30 outbreaks in the last 50 years. Currently, there are no FDA-approved small molecule therapeutics for effectively treating filoviral diseases. To address this unmet medical need, we have conducted a systematic structural optimization of an early lead compound, -(4-(4-methylpiperidin-1-yl)-3-(trifluoromethyl)phenyl)-4-(morpholinomethyl)benzamide (), borne from our previously reported hit-to-lead effort.

View Article and Find Full Text PDF

Filoviruses enter cells through macropinocytosis and trafficking into the endosomes in which they bind to the receptor Niemann-Pick C1 protein (NPC1) for membrane fusion and entry into the cytoplasm. The endosomal receptor-binding is critical step for filovirus entry. Designing inhibitors to block receptor binding will prevent viral entry.

View Article and Find Full Text PDF

Pharmacologically active compounds with known biological targets were evaluated for inhibition of SARS-CoV-2 infection in cell and tissue models to help identify potent classes of active small molecules and to better understand host-virus interactions. We evaluated 6,710 clinical and preclinical compounds targeting 2,183 host proteins by immunocytofluorescence-based screening to identify SARS-CoV-2 infection inhibitors. Computationally integrating relationships between small molecule structure, dose-response antiviral activity, host target, and cell interactome produced cellular networks important for infection.

View Article and Find Full Text PDF

Ebola virus (EBOV) is an aggressive filoviral pathogen that can induce severe hemorrhagic fever in humans with up to 90% fatality rate. To date, there are no clinically effective small-molecule drugs for postexposure therapies to treat filoviral infections. EBOV cellular entry and infection involve uptake via macropinocytosis, navigation through the endocytic pathway, and pH-dependent escape into the cytoplasm.

View Article and Find Full Text PDF

The Ebola virus VP30 protein interacts with the viral nucleoprotein and with host protein RBBP6 via PPxPxY motifs that adopt non-canonical orientations, as compared to other proline-rich motifs. An affinity tag-purification mass spectrometry approach identified additional PPxPxY-containing host proteins hnRNP L, hnRNPUL1, and PEG10, as VP30 interactors. hnRNP L and PEG10, like RBBP6, inhibit viral RNA synthesis and EBOV infection, whereas hnRNPUL1 enhances.

View Article and Find Full Text PDF

Identification of host factors contributing to replication of viruses and resulting disease progression remains a promising approach for development of new therapeutics. Here, we evaluated 6710 clinical and preclinical compounds targeting 2183 host proteins by immunocytofluorescence-based screening to identify SARS-CoV-2 infection inhibitors. Computationally integrating relationships between small molecule structure, dose-response antiviral activity, host target and cell interactome networking produced cellular networks important for infection.

View Article and Find Full Text PDF

Filoviruses, mainly consisting of Ebola viruses (EBOV) and Marburg viruses (MARV), are enveloped negative-strand RNA viruses which can infect humans to cause severe hemorrhagic fevers and outbreaks with high mortality rates. The filovirus infection is mediated by the interaction of viral envelope glycoprotein (GP) and the human endosomal receptor Niemann-Pick C1 (NPC1). Blocking this interaction will prevent the infection.

View Article and Find Full Text PDF
Article Synopsis
  • Ongoing research on therapies for filoviruses faces challenges in accurately measuring viable virus due to variability in traditional assays like plaque and TCID tests.
  • A new computer-based automated image-processing method using CellProfiler enhances the focus assay, allowing for high-throughput screening and reducing human error in measuring virus titers.
  • Comparison of different assay methods reveals that while plaque assays provide consistent results, focus and TCID assays have notable differences in sensitivity, reproducibility, and overall accuracy, with focus assays offering advantages in speed.
View Article and Find Full Text PDF

Filoviridae, including Ebola (EBOV) and Marburg (MARV) viruses, are emerging pathogens that pose a serious threat to public health. No agents have been approved to treat filovirus infections, representing a major unmet medical need. The selective estrogen receptor modulator (SERM) toremifene was previously identified from a screen of FDA-approved drugs as a potent EBOV viral entry inhibitor, via binding to EBOV glycoprotein (GP).

View Article and Find Full Text PDF

Marburg virus (MARV) causes sporadic outbreaks of severe disease with high case fatality rates in humans. To date, neither therapeutics nor prophylactic approaches have been approved for MARV disease. The MARV matrix protein VP40 (mVP40) plays central roles in virus assembly and budding.

View Article and Find Full Text PDF

The recent outbreaks of the Ebola virus (EBOV) in Africa have brought global visibility to the shortage of available therapeutic options to treat patients infected with this or closely related viruses. We have recently computationally identified three molecules which have all demonstrated statistically significant efficacy in the mouse model of infection with mouse adapted Ebola virus (ma-EBOV). One of these molecules is the antimalarial pyronaridine tetraphosphate (IC range of 0.

View Article and Find Full Text PDF

The recent Ebola epidemics in West Africa underscore the great need for effective and practical therapies for future Ebola virus outbreaks. We have discovered a new series of remarkably potent small molecule inhibitors of Ebola virus entry. These 4-(aminomethyl)benzamide-based inhibitors are also effective against Marburg virus.

View Article and Find Full Text PDF

Recent outbreaks of the Ebola virus (EBOV) have focused attention on the dire need for antivirals to treat these patients. We identified pyronaridine tetraphosphate as a potential candidate as it is an approved drug in the European Union which is currently used in combination with artesunate as a treatment for malaria (EC50 between 420 nM-1.14 μM against EBOV in HeLa cells).

View Article and Find Full Text PDF

Purpose: Since the 2014 Ebola virus (EBOV) outbreak in West Africa there has been considerable effort towards developing drugs to treat Ebola virus disease and yet to date there is no FDA approved treatment. This is important as at the time of writing this manuscript there is an ongoing outbreak in the Democratic Republic of the Congo which has killed over 1000.

Methods: We have evaluated a small number of natural products, some of which had shown antiviral activity against other pathogens.

View Article and Find Full Text PDF

We have previously described the first Bayesian machine learning models from FDA-approved drug screens, for identifying compounds active against the Ebola virus (EBOV). These models led to the identification of three active molecules in vitro: tilorone, pyronaridine, and quinacrine. A follow-up study demonstrated that one of these compounds, tilorone, has 100% in vivo efficacy in mice infected with mouse-adapted EBOV at 30 mg/kg/day intraperitoneal.

View Article and Find Full Text PDF

Ebola virus (EBOV) infection often results in fatal illness in humans, yet little is known about how EBOV usurps host pathways during infection. To address this, we used affinity tag-purification mass spectrometry (AP-MS) to generate an EBOV-host protein-protein interaction (PPI) map. We uncovered 194 high-confidence EBOV-human PPIs, including one between the viral transcription regulator VP30 and the host ubiquitin ligase RBBP6.

View Article and Find Full Text PDF

Ebola virus is the causative agent of Ebola virus disease in humans. The lethality of Ebola virus infection is about 50%, supporting the urgent need to develop anti-Ebola drugs. Glycoprotein (GP) is the only surface protein of the Ebola virus, which is functionally critical for the virus to attach and enter the host cells, and is a promising target for anti-Ebola virus drug development.

View Article and Find Full Text PDF

Many viruses use endosomal pathways to gain entry into cells and propagate infection. Sensing of endosomal acidification is a trigger for the release of many virus cores into the cell cytosol. Previous efforts with inhibitors of vacuolar ATPase have been shown to block endosomal acidification and affect viral entry, albeit with limited potential for therapeutic selectivity.

View Article and Find Full Text PDF

Specific host pathways that may be targeted therapeutically to inhibit the replication of Ebola virus (EBOV) and other emerging viruses remain incompletely defined. A screen of 200,000 compounds for inhibition of an EBOV minigenome (MG) assay that measures the function of the viral polymerase complex identified as hits several compounds with an amino-tetrahydrocarbazole scaffold. This scaffold was structurally similar to GSK983, a compound previously described as having broad-spectrum antiviral activity due to its impairing de novo pyrimidine biosynthesis through inhibition of dihydroorotate dehydrogenase (DHODH).

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on developing fully human monoclonal antibodies (mAbs) to effectively treat Zaire ebolavirus, aiming to overcome challenges in creating rapid therapeutics for emerging infections.
  • Researchers used VelocImmune mice to produce specific anti-EBOV antibodies and identified three clones that were effective in neutralizing the virus and activating immune responses.
  • The combination of these three antibodies showed significant protective effects against EBOV in nonhuman primates, demonstrating the potential for future use in human trials and responses to Ebola outbreaks.*
View Article and Find Full Text PDF
Article Synopsis
  • The 2014-2016 West African Ebola outbreak highlighted the urgent need for new treatments, as there were no approved vaccines or therapies to combat the virus.
  • Researchers screened 373 extracts from 128 Traditional Chinese Medicines (TCMs) and found that certain extracts inhibited the entry of both Ebola and Marburg viruses into cells.
  • Among the tested compounds, ellagic acid and gallic acid showed the most promise in blocking the virus, suggesting these TCM-derived substances could be developed into effective anti-Ebola treatments.
View Article and Find Full Text PDF

Viral emergence and reemergence underscore the importance of developing efficacious, broad-spectrum antivirals. Here, we report the discovery of tetrahydrobenzothiazole-based compound 1, a novel, broad-spectrum antiviral lead that was optimized from a hit compound derived from a cytopathic effect (CPE)-based antiviral screen using Venezuelan equine encephalitis virus. Compound 1 showed antiviral activity against a broad range of RNA viruses, including alphaviruses, flaviviruses, influenza virus, and ebolavirus.

View Article and Find Full Text PDF

Filoviruses are highly infectious, and no FDA-approved drug therapy for filovirus infection is available. Most work to find a treatment has involved only a few strains of Ebola virus and testing of relatively small drug libraries or compounds that have shown efficacy against other virus types. Here we report the findings of a high-throughput screening of 319,855 small molecules from the Molecular Libraries Small Molecule Repository library for their activities against Marburg virus and Ebola virus.

View Article and Find Full Text PDF

Background: Transfusion of plasma from recovered patients after Ebolavirus (EBOV) infection, typically called "convalescent plasma," is an effective treatment for active disease available in endemic areas, but carries the risk of introducing other pathogens, including other strains of EBOV. A pathogen reduction technology using ultraviolet light and riboflavin (UV+RB) is effective against multiple enveloped, negative-sense, single-stranded RNA viruses that are similar in structure to EBOV. We hypothesized that UV+RB is effective against EBOV in blood products without activating complement or reducing protective immunoglobulin titers that are important for the treatment of Ebola virus disease (EVD).

View Article and Find Full Text PDF