Publications by authors named "Mantsch J"

Efforts to understand and respond to the opioid crisis have focused on overdose fatalities. Overdose mortality rates (ratios of overdoses resulting in death) are rarely examined though they are important indicators of harm reduction effectiveness. Factors that vary across urban communities likely determine which community members are receiving the resources needed to reduce fatal overdose risk.

View Article and Find Full Text PDF

Dopamine release in the nucleus accumbens core (NAcC) has long been associated with the promotion of motivated behavior. However, inhibited dopamine signaling can increase behavior in certain settings, such as during drug self-administration. While aversive environmental stimuli can reduce dopamine, it is unclear whether such stimuli reliably engage this mechanism in different contexts.

View Article and Find Full Text PDF

Background: Structural racism produces mental health disparities. While studies have examined the impact of individual factors such as poverty and education, the collective contribution of these elements, as manifestations of structural racism, has been less explored. Milwaukee County, Wisconsin, with its racial and socioeconomic diversity, provides a unique context for this multifactorial investigation.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic cocaine use changes how certain brain cells react, making rats more motivated to seek the drug.
  • In a part of the brain called the VTA, specific channels that help manage cell activity (HCN channels) behave differently after cocaine is used for a long time.
  • Blocking these HCN channels in the VTA reduces how much the rats want to take cocaine, indicating that these channels play a big role in drug cravings.
View Article and Find Full Text PDF

Stress is prevalent in the lives of those with substance use disorders (SUDs) and influences SUD outcomes. Understanding the neurobiological mechanisms through which stress promotes drug use is important for the development of effective SUD interventions. We have developed a model wherein exposure to a stressor, uncontrollable electric footshock, daily at the time of cocaine self-administration escalates intake in male rats.

View Article and Find Full Text PDF

Introduction: Drug overdose deaths are often geographically discordant (the community in which the overdose death occurs is different from the community of residence). Thus, in many cases there is a journey to overdose.

Methods: We applied geospatial analysis to examine characteristics that define journeys to overdoses using Milwaukee, Wisconsin, a diverse and segregated metropolitan area in which 26.

View Article and Find Full Text PDF

The neuropeptide, corticotropin releasing factor (CRF), has been an enigmatic target for the development of medications aimed at treating stress-related disorders. Despite a large body of evidence from preclinical studies in rodents demonstrating that CRF receptor antagonists prevent stressor-induced drug seeking, medications targeting the CRF-R1 have failed in clinical trials. Here, we provide an overview of the abundant findings from preclinical rodent studies suggesting that CRF signaling is involved in stressor-induced relapse.

View Article and Find Full Text PDF

The effects of the opioid crisis have varied across diverse and socioeconomically defined urban communities, due in part to widening health disparities. The onset of the COVID-19 pandemic has coincided with a spike in drug overdose deaths in the USA. However, the extent to which the impact of the pandemic on overdose deaths has varied across different demographics in urban neighborhoods is unclear.

View Article and Find Full Text PDF

To provide data that can guide community-targeted practices, policies, and interventions in urban metropolitan areas, we used geospatial analysis to examine the community-level opioid overdose death determinants and their spatial variation across a study area. We obtained spatial datasets containing multiple, high-quality measures of socioeconomic conditions, public health status, and demographics for analysis and visualization in geographic information systems. We employed a multiscale modeling approach (multiscale geographically weighted regression; MGWR) to provide a comprehensive and robust analysis of opioid overdose death determinants, explain how geospatial patterns vary across scales across Milwaukee County in 2019, and examine the differential influence of factors locally, regionally, and globally.

View Article and Find Full Text PDF

Relapse susceptibility in women with substance use disorders (SUDs) has been linked to the estrogen, 17β-estradiol (E2). Our previous findings in female rats suggest that the influence of E2 on cocaine seeking can be localized to the prelimbic prefrontal cortex (PrL-PFC). Here, we investigated the receptor mechanisms through which E2 regulates the reinstatement of extinguished cocaine seeking.

View Article and Find Full Text PDF

In individuals with substance use disorders, stress is a critical determinant of relapse susceptibility. In some cases, stressors directly trigger cocaine use. In others, stressors interact with other stimuli to promote drug seeking, thereby setting the stage for relapse.

View Article and Find Full Text PDF

Chronic stress impairs the function of multiple brain regions and causes severe hedonic and motivational deficits. One brain region known to be susceptible to these effects is the PFC. Neurons in this region, specifically neuronal projections from the prelimbic region (PL) to the nucleus accumbens core (NAcC), have a significant role in promoting motivated approach.

View Article and Find Full Text PDF

Clinical reports suggest that females diagnosed with substance use disorder experience enhanced relapse vulnerability compared with males, particularly during stress. We previously demonstrated that a stressor (footshock) can potentiate cocaine seeking in male rats via glucocorticoid-dependent cannabinoid type-1 receptor (CB1R)-mediated actions in the prelimbic prefrontal cortex (PrL-PFC). Here, we investigated the influence of biological sex on stress-potentiated cocaine seeking.

View Article and Find Full Text PDF

Despite extensive research efforts, drug addiction persists as a largely unmet medical need. Perhaps the biggest challenge for treating addiction is the high rate of recidivism. While many factors can promote relapse in abstinent drug users, the contribution of stress is particularly problematic, as stress is uncontrollable and pervasive in the lives of those struggling with addiction.

View Article and Find Full Text PDF

The ability of stress to trigger cocaine seeking in humans and rodents is variable and is determined by the amount and pattern of prior drug use. This study examined the role of a corticotropin releasing factor (CRF)-regulated dopaminergic projection from the ventral tegmental area (VTA) to the prelimbic cortex in shock-induced cocaine seeking and its recruitment under self-administration conditions that establish relapse vulnerability. Male rats with a history of daily long-access (LgA; 14 × 6 h/d) but not short-access (ShA; 14 × 2 h/d) self-administration showed robust shock-induced cocaine seeking.

View Article and Find Full Text PDF

Background: Clinical reports suggest that rather than directly driving cocaine use, stress may create a biological context within which other triggers for drug use become more potent. We hypothesize that stress-induced increases in corticosterone "set the stage" for relapse by promoting endocannabinoid-induced attenuation of inhibitory transmission in the prelimbic cortex (PL).

Methods: We have established a rat model for these stage-setting effects of stress.

View Article and Find Full Text PDF

Stressful and aversive events promote maladaptive reward-seeking behaviors such as drug addiction by acting, in part, on the mesolimbic dopamine system. Using animal models, data from our laboratory and others show that stress and cocaine can interact to produce a synergistic effect on reward circuitry. This effect is also observed when the stress hormone corticosterone is administered directly into the nucleus accumbens (NAc), indicating that glucocorticoids act locally in dopamine terminal regions to enhance cocaine's effects on dopamine signaling.

View Article and Find Full Text PDF

Clinical observations imply that female cocaine addicts experience enhanced relapse vulnerability compared with males, an effect tied to elevated estrogen phases of the ovarian hormone cycle. Although estrogens can enhance drug-seeking behavior, they do not directly induce reinstatement on their own. To model this phenomenon, we tested whether an estrogen could augment drug-seeking behavior in response to an ordinarily subthreshold reinstatement trigger.

View Article and Find Full Text PDF

The mechanisms by which stressful life events increase the risk of relapse in recovering cocaine addicts are not well understood. We previously reported that stress, via elevated corticosterone, potentiates cocaine-primed reinstatement of cocaine seeking following self-administration in rats and that this potentiation appears to involve corticosterone-induced blockade of dopamine clearance via the organic cation transporter 3 (OCT3). In the present study, we use a conditioned place preference/reinstatement paradigm in mice to directly test the hypothesis that corticosterone potentiates cocaine-primed reinstatement by blockade of OCT3.

View Article and Find Full Text PDF

Glutamate signaling is achieved by an elaborate network involving neurons and astrocytes. Hence, it is critical to better understand how neurons and astrocytes interact to coordinate the cellular regulation of glutamate signaling. In these studies, we used rat cortical cell cultures to examine whether neurons or releasable neuronal factors were capable of regulating system xc (-) (Sxc), a glutamate-releasing mechanism that is expressed primarily by astrocytes and has been shown to regulate synaptic transmission.

View Article and Find Full Text PDF

Stress-induced reinstatement of cocaine seeking requires corticotropin releasing factor (CRF) actions in the ventral tegmental area (VTA). However the mechanisms through which CRF regulates VTA function to promote cocaine use are not fully understood. Here we examined the role of GABAergic neurotransmission in the VTA mediated by GABA-A or GABA-B receptors in the reinstatement of extinguished cocaine seeking by a stressor, uncontrollable intermittent footshock, or bilateral intra-VTA administration of CRF.

View Article and Find Full Text PDF

Rationale: Under some conditions, stress, rather than directly triggering cocaine seeking, potentiates reinstatement to other stimuli, including a subthreshold cocaine dose. The mechanisms responsible for stress-potentiated reinstatement are not well defined. Endocannabinoid signaling is increased by stress and regulates synaptic transmission in brain regions implicated in motivated behavior.

View Article and Find Full Text PDF

In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures.

View Article and Find Full Text PDF

Background: Stressors negatively impact emotional state and drive drug seeking, in part, by modulating the activity of the mesolimbic dopamine system. Unfortunately, the rapid regulation of dopamine signaling by the aversive stimuli that cause drug seeking is not well characterized. In a series of experiments, we scrutinized the subsecond regulation of dopamine signaling by the aversive stimulus, quinine, and tested its ability to cause cocaine seeking.

View Article and Find Full Text PDF