Idiopathic Pulmonary Fibrosis (IPF) is a progressive disorder that is marked by an over accumulation of activated fibroblast populations. Despite the improved understanding of many mechanisms within this disease, global gene expression analysis has few focused studies on the fibroblast, the central effector cell of progressive fibrosis. We present a unique analysis of IPF pulmonary fibroblasts as they transition through cell culture and identify in vitro altered cellular processes.
View Article and Find Full Text PDFActivated fibroblasts are the central effector cells of the progressive fibrotic process in idiopathic pulmonary fibrosis (IPF). Characterizing the genomic phenotype of isolated fibroblasts is essential to understanding IPF pathogenesis. Comparing the genomic phenotype of non-cultured pulmonary fibroblasts from advanced IPF patients' and normal lungs revealed novel genes, biological processes and concomitant pathways previously unreported in IPF fibroblasts.
View Article and Find Full Text PDFImatinib mesylate is a small molecule inhibitor that selectively inhibits the PDGF receptor kinase as well the cKIT and Abl kinases, among other targets. Various studies have implicated the PDGF pathway in the pathogenesis of pulmonary arterial hypertension (PAH). Inhibition with imatinib mesylate has shown efficacy in human case reports and experimental models of PAH.
View Article and Find Full Text PDFExpert Rev Respir Med
August 2008
Pulmonary fibrosis is a disease characterized by progressive scarring of the lungs, with idiopathic pulmonary fibrosis (IPF) being the most aggressive form. The diagnosis of IPF is made after other conditions are excluded and is based on a characteristic clinical presentation, radiographic features and, sometimes, pathologic specimen. Existing IPF drug regimens, including corticosteroids and cytotoxic medications, are generally ineffective.
View Article and Find Full Text PDF