Alcoholysis is a promising approach for upcycling postconsumer polylactide (PLA) products into valuable constituents. In addition, an alcohol-acidolysis of PLA by multifunctional 2,2-bis(hydroxymethyl)propionic acid (DMPA) produces lactate oligomers with hydroxyl and carboxylic acid terminals. In this work, a process for sizing down commercial PLA resin to optimum medium-sized lactate oligomers is developed at a lower cost than a bottom-up synthesis from its monomer.
View Article and Find Full Text PDFA process for sizing down and functionalizing commercial polylactide (PLA) resin is developed by alcoholysis with 1,4-butanediol (BDO) and propylene glycol (PG) to medium-sized PLA-based diols, with lower cost than a bottom-up synthesis process. These are subsequently used as polyols in preparing polyurethanes (PU) by reacting with 1,6-diisocyanatohexane (HDI). The PLA-based PU has an excellent elongation at break of 487%.
View Article and Find Full Text PDFA process for preparing emulsions of alkyl ketene dimer (AKD) nanoparticles a nanoemulsion template (emulsion/evaporation) method has been developed. The effects of types and contents of stabilizing agents, , anionic (sodium dodecyl sulfate, SDS), cationic (cetyltrimethylammonium bromide, CTAB), amphoteric (phosphatidylcholine, PC), and polymeric (poly(vinyl alcohol), PVA), on the colloidal stability and hydrodynamic size of the AKD nanoparticles are investigated. The use of 0.
View Article and Find Full Text PDFThe band origins and transitions of weak vibrational modes developed in the 3500 cm(-1) region of polylactide (PLA) spectra during crystallization are investigated. The band assignment to the OH stretching mode of terminal hydroxyls is unlikely because the trace amount of chain-ends is negligible considering the long chain of high molecular weight polymer. The band intensity can be enhanced for quantitative study by increasing the sample film thickness.
View Article and Find Full Text PDF