Publications by authors named "Mansukhani A"

Osteosarcoma (OS) is an aggressive bone cancer originating in the mesenchymal lineage. Prognosis for metastatic disease is poor, with a mortality rate of approximately 40%; OS is an aggressive disease for which new treatments are needed. All bone cells are sensitive to their mechanical/physical surroundings and changes in these surroundings can affect their behavior.

View Article and Find Full Text PDF

Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) family members generate phosphatidylinositol 4,5-bisphosphate (PIP2), a critical lipid regulator of diverse physiological processes. The PIP5K-dependent PIP2 generation can also act upstream of the oncogenic phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Many studies have demonstrated various mechanisms of spatiotemporal regulation of PIP5K catalytic activity.

View Article and Find Full Text PDF

The stem cell transcription factor Sox2 is highly expressed in many cancers where it is thought to mark cancer stem cells (CSCs). In osteosarcomas, the most common bone malignancy, high Sox2 expression marks and maintains a fraction of tumor-initiating cells that show all the properties of CSC. Knockdown of Sox2 expression abolishes tumorigenicity and suppresses the CSC phenotype.

View Article and Find Full Text PDF

The transcription factor (TF) yes-associated protein 1 (YAP1) is a major effector of the tumor suppressive Hippo signaling pathway and is also necessary to maintain pluripotency in embryonic stem cells. Elevated levels of YAP1 expression antagonize the tumor suppressive effects of the Hippo pathway that normally represses YAP1 function. High YAP1 expression is observed in several types of human cancers and is particularly prominent in cancer stem cells (CSCs).

View Article and Find Full Text PDF

Osteosarcomas are malignant tumors of bone, most commonly seen in children and adolescents. Despite advances in modern medicine, the poor survival rate of metastatic osteosarcoma has not improved in two decades. In the present study we have investigated the effect of Riluzole on a human and mouse metastatic osteosarcoma cells.

View Article and Find Full Text PDF

Introduction: Cruciate Paralysis is a rare incomplete spinal cord syndrome presenting as brachial diplegia with minimal or no involvement of the lower extremities. It occurs as a result of trauma to the cervical spine and is associated with fractures of the axis and/or atlas. Diagnosis is confirmed on MRI and is managed by treatment of the underlying pathology.

View Article and Find Full Text PDF

Osteosarcoma (OS) is a highly aggressive pediatric bone cancer in which most tumor cells remain immature and fail to differentiate into bone-forming osteoblasts. However, OS cells readily respond to adipogenic stimuli suggesting they retain mesenchymal stem cell-like properties. Here we demonstrate that nuclear receptor PPARγ agonists such as the anti-diabetic, thiazolidinedione (TZD) drugs induce growth arrest and cause adipogenic differentiation in human, mouse and canine OS cells as well as in tumors in mice.

View Article and Find Full Text PDF

Ovarian cancer presents as an aggressive, advanced stage cancer with widespread metastases that depend primarily on multicellular spheroids in the peritoneal fluid. To identify new druggable pathways related to metastatic progression and spheroid formation, we integrated microRNA and mRNA sequencing data from 293 tumors from The Cancer Genome Atlas (TCGA) ovarian cancer cohort. We identified miR-509-3p as a clinically significant microRNA that is more abundant in patients with favorable survival in both the TCGA cohort (P = 2.

View Article and Find Full Text PDF

The molecular basis by which receptor tyrosine kinases (RTKs) recruit and phosphorylate Src Homology 2 (SH2) domain-containing substrates has remained elusive. We used X-ray crystallography, NMR spectroscopy, and cell-based assays to demonstrate that recruitment and phosphorylation of Phospholipase Cγ (PLCγ), a prototypical SH2 containing substrate, by FGF receptors (FGFR) entails formation of an allosteric 2:1 FGFR-PLCγ complex. We show that the engagement of pTyr-binding pocket of the cSH2 domain of PLCγ by the phosphorylated tail of an FGFR kinase induces a conformational change at the region past the cSH2 core domain encompassing Tyr-771 and Tyr-783 to facilitate the binding/phosphorylation of these tyrosines by another FGFR kinase in trans.

View Article and Find Full Text PDF

The repressive Hippo pathway has a profound tumour suppressive role in cancer by restraining the growth-promoting function of the transcriptional coactivator, YAP. We previously showed that the stem cell transcription factor Sox2 maintains cancer stem cells (CSCs) in osteosarcomas. We now report that in these tumours, Sox2 antagonizes the Hippo pathway by direct repression of two Hippo activators, Nf2 (Merlin) and WWC1 (Kibra), leading to exaggerated YAP function.

View Article and Find Full Text PDF

Macrophages adopt an alternatively activated phenotype (AAMs) when activated by the interleukin-4receptor(R)α. AAMs can be derived either from proliferation of tissue resident macrophages or recruited inflammatory monocytes, but it is not known whether these different sources generate AAMs that are phenotypically and functionally distinct. By transcriptional profiling analysis, we show here that, although both monocyte and tissue-derived AAMs expressed high levels of Arg1, Chi3l3, and Retnla, only monocyte-derived AAMs up-regulated Raldh2 and PD-L2.

View Article and Find Full Text PDF

The osteoblastic and adipocytic lineages arise from mesenchymal stem cells (MSCs), but few regulators of self-renewal and early cell-fate decisions are known. Here, we show that the Hippo pathway effector YAP1 is a direct target of SOX2 and can compensate for the self-renewal defect caused by SOX2 inactivation in osteoprogenitors and MSCs. Osteogenesis is blocked by high SOX2 or YAP1, accelerated by depletion of either one, and the inhibition of osteogenesis by SOX2 requires YAP1.

View Article and Find Full Text PDF

Background: Supernumerary teeth are often observed in patients suffering from cleidocranial dysplasia due to a mutation in Runx2 that results in haploinsufficiency. However, the underlying molecular mechanisms are poorly defined. In this study, we assessed the roles of Runx2 and its functional antagonist Twist1 in regulating fibroblast growth factor (FGF) signaling using in vitro biochemical approaches.

View Article and Find Full Text PDF

Osteosarcoma is an aggressive pediatric tumor of growing bones that, despite surgery and chemotherapy, is prone to relapse. These mesenchymal tumors are derived from progenitor cells in the osteoblast lineage that have accumulated mutations to escape cell cycle checkpoints leading to excessive proliferation and defects in their ability to differentiate appropriately into mature bone-forming osteoblasts. Like other malignant tumors, osteosarcoma is often heterogeneous, consisting of phenotypically distinct cells with features of different stages of differentiation.

View Article and Find Full Text PDF

The transcription factor Sox2 is a key player in the maintenance of pluripotency and "stemness." We have previously shown that Sox2 maintains self-renewal in the osteoblast lineage while inhibiting differentiation (U. Basu-Roy et al.

View Article and Find Full Text PDF

Tumors are thought to be sustained by a reservoir of self-renewing cells, termed tumor-initiating cells or cancer stem cells. Osteosarcomas are high-grade sarcomas derived from osteoblast progenitor cells and are the most common pediatric bone malignancy. In this report we show that the stem cell transcription factor Sox2 is highly expressed in human and murine osteosarcoma (mOS) cell lines as well as in the tumor samples.

View Article and Find Full Text PDF

The development and maintenance of most tissues and organs require the presence of multipotent and unipotent stem cells that have the ability of self-renewal as well as of generating committed, further differentiated cell types. The transcription factor Sox2 is essential for embryonic development and maintains pluripotency and self-renewal in embryonic stem cells. It is expressed in immature osteoblasts/osteoprogenitors in vitro and in vivo and is induced by fibroblast growth factor signaling, which stimulates osteoblast proliferation and inhibits differentiation.

View Article and Find Full Text PDF

Activating mutations of FGFRs1-3 cause craniosynostosis (CS), the premature fusion of cranial bones, in man and mouse. The mechanisms by which such mutations lead to CS have been variously ascribed to increased osteoblast proliferation, differentiation, and apoptosis, but it is not always clear how these disturbances relate to the process of suture fusion. We have reassessed coronal suture fusion in an Apert Fgfr2 (S252W) mouse model.

View Article and Find Full Text PDF

Fibroblast growth factor receptor (FGFR) is expressed in a variety of cells and is involved in their proliferation/migration/survival. To elucidate FGFR-mediated specific action of vascular endothelial cells (ECs) on myocardial ischemia, we generated endothelium-targeted transgenic mice overexpressing constitutively active FGFR2 using Tie2 promoter (FGFR2-Tg). Infarct size, vessel formation and blood perfusion were significantly improved 28 days after myocardial infarction (MI) in FGFR2-Tg, compared with wild-type mice.

View Article and Find Full Text PDF

Fibroblast growth factor (FGF) and Wnt signals are both critical for proper bone development. We previously reported that the expression of activating FGF receptor mutations in osteoblasts downregulated the expression of many genes reported as targets of Wnt signaling, suggesting an antagonistic effect between Wnt signaling, which promotes osteoblast differentiation and function, and FGF signaling, which inhibits these processes. To analyze the effect of FGF on Wnt signaling in osteoblasts, we created reporter cell lines where a Wnt-responsive promoter drives luciferase expression and showed that Wnt3a-induced luciferase expression was specifically inhibited by FGF treatment.

View Article and Find Full Text PDF

Enhanced mesenchymal expression of FGF10 led to the formation of multifocal PIN or prostate cancer. Inhibition of epithelial FGFR1 signaling using DN FGFR1 led to reversal of the cancer phenotype. A subset of the FGF10-induced carcinoma was serially transplantable.

View Article and Find Full Text PDF

Skeletal development requires the correct balance of osteoblast proliferation, survival, and differentiation which is modulated by a network of signaling pathways and transcription factors. We have examined the role of the AKT (PKB), and ERK1/2 signaling pathways in the osteoblast response to FGFs, which inhibit differentiation, and to IGF-1 and Wnt signaling, which promote it. Using osteoblastic cell lines as well as primary calvarial osteoblasts, we show that ERK1/2 and AKT have distinct effects in FGF-induced osteoblast proliferation and differentiation.

View Article and Find Full Text PDF

This study explores the psychometric properties of the Spanish adaptation of the Mood Spectrum Self-Report (MOODS-SR), an instrument designed to assess a broad range of manifestations of mood psychopathology. A total of 71 Spanish subjects participated: 49 outpatients who met criteria for a mood disorder or generalized anxiety disorder, and 22 normal controls. The instrument proved to have good internal consistency and test-retest reliability.

View Article and Find Full Text PDF

Fibroblast growth factors (FGFs) are key regulators of several developmental processes in which cell fate and differentiation to various tissue lineages are determined. The importance of the proper spatial and temporal regulation of FGF signals is evident from human and mouse genetic studies which show that mutations leading to the dysregulation of FGF signals cause a variety of developmental disorders including dominant skeletal diseases and cancer. The FGF ligands signal via a family of receptor tyrosine kinases and, depending on the cell type or stage of maturation, produce diverse biological responses that include proliferation, growth arrest, differentiation or apoptosis.

View Article and Find Full Text PDF