Japanese encephalitis (JE) is the leading cause of viral neurological disease and disability in Asia. Some 50-80% of children with clinical JE die or have long-term neurologic sequelae. Since there is no cure, human vaccination is the only effective long-term control measure, and the World Health Organization recommends that at-risk populations receive a safe and effective vaccine.
View Article and Find Full Text PDFBackground: Japanese encephalitis (JE) virus (JEV) causes severe epidemic encephalitis across Asia, for which the live attenuated vaccine SA14-14-2 is being used increasingly. JEV is a flavivirus, and is closely related to dengue virus (DENV), which is co-endemic in many parts of Asia, with clinically relevant interactions. There is no information on the human T cell response to SA14-14-2, or whether responses to SA14-14-2 cross-react with DENV.
View Article and Find Full Text PDFWe conducted a four-arm, double-blind, randomized controlled trial among 818 Bangladeshi infants between 10 and 12 months of age to establish equivalence among three lots of live attenuated SA 14-14-2 JE vaccine manufactured by the China National Biotec Group's Chengdu Institute of Biological Products (CDIBP) in a new Good Manufacturing Practice (GMP) facility and to evaluate non-inferiority of the product with a lot of the same vaccine manufactured in CDIBP's original facility. The study took place in two sites in Bangladesh, rural Matlab and Mirpur in urban Dhaka. We collected pre-vaccination (Day 0) and post-vaccination Day 28 (-4 to +14 days) blood samples to assess neutralizing anti-JE virus antibody titers in serum by plaque reduction neutralization tests (PRNT).
View Article and Find Full Text PDFIntroduction: To facilitate introduction of live attenuated SA 14-14-2 Japanese encephalitis vaccine (LJEV) into the National Immunization Programme of Sri Lanka, we evaluated the safety and immunogenicity of co-administration of LJEV and measles vaccine at 9 months of age. Serum immune responses were evaluated post-vaccination on days 28, 180, and 365 using JE neutralization test and anti-measles IgG ELISA.
Results: 278 infants received one dose of LJEV and measles vaccine.
This commentary discusses the barrier of vaccine price on sustainable immunization programs in developing countries and offers examples of new mechanisms driven by public-private partnerships to overcome issues of affordability. These mechanisms include Advance Market Commitments with vaccine manufacturers, which take a demand-pull approach to ensure increased production of available vaccines or development of new vaccines for neglected diseases. A second approach applies a supply-push mechanism, such as technology transfer to developing-country manufacturers.
View Article and Find Full Text PDFJapanese encephalitis (JE) virus is a major cause of disease, disability, and death in Asia. An effective, live, attenuated JE vaccine (LJEV) is available; however, its use in routine immunization schedules is hampered by lack of data on concomitant administration with measles vaccine (MV). This study evaluated the immunogenicity and reactogenicity of LJEV and MV when administered at the same or separate study visits in infants younger than 1 year of age.
View Article and Find Full Text PDFFinnish and Israeli infants received an 11-valent mixed carrier pneumococcal conjugate vaccine (11PCV) with or without aluminum adjuvant at the age of 2, 4, 6, and 12 months. We measured opsonophagocytic activity (OPA) of antibodies to pneumococcal strains of serotypes 4, 6B, 14, 19F, and 23F. At 7 months, OPA was clearly detected for all the serotypes.
View Article and Find Full Text PDFIn pneumococcal conjugate vaccines (PCVs), polysaccharide antigens are often conjugated to protein carriers related to other common vaccines. It is therefore important to test PCV interaction with other pediatric vaccines when administered simultaneously. We assessed the immune response to an 11-valent PCV conjugated to diphtheria and tetanus carriers (PncD/T11), administered concomitantly, but in separate sites, with a combined vaccine containing epitopes related antigenically to the carriers: polyribosylribitol phosphate-tetanus tox oid (PRP-T), diphtheria toxoid (DT), and tetanus toxoid (TT).
View Article and Find Full Text PDFBackground: To have wide global coverage of pneumococcal serotypes, the number of serotypes covered by the current 7-valent pneumococcal conjugate vaccine must be increased. We have studied the safety and immunogenicity of an 11-valent mixed carrier vaccine (PncDT11) in infants.
Methods: The study vaccine contained polysaccharide antigens of serotypes 1, 4, 5, 7F, 9V, 19F and 23F conjugated to tetanus protein and serotypes 3, 6B, 14 and 18C conjugated to diphtheria toxoid.