One of the important issues in urban areas is air pollution which causes respiratory disorders. A significant association between exposure to inhaled particulate matter (PM), mainly ultrafine particles, and increased neurological and pulmonary morbidity and mortality was observed in some research. This study aimed to demonstrate the relation between multi-wall carbon nanotubes (MWCNTs) inhalation and the carcinogenic effect of these materials in the brain and lungs.
View Article and Find Full Text PDFBackground: Carbon-based nanomaterials (CBNs) are the key elements in nanotechnology. The main challenge presented by CBNs is their relationship with the toxicity exposed in the biological systems, because of the incomplete information on their toxicity. This study is aimed to compare the cytotoxicity of graphite nanoparticles (GRNPs), graphene nanoparticles (GNPs), and multi-walled carbon nanotubes (MWCNTs) in A549 cells.
View Article and Find Full Text PDFThe study on the health effects of combined exposure to various contaminants has been recommended by many authors. The objective of the present study was to examine the effects of the co-exposure to hematite and amorphous silicon dioxide (A-SiO) nanoparticles on the human lung A cell line. The A cell line was exposed to 10, 50, 100, and 250 µg/ml concentrations of hematite and A-SiO nanoparticles both independently and in combination.
View Article and Find Full Text PDFThe toxicity of carbon nanotubes (CNTs) toward the mitochondria of the kidney is not fully recognized and still needs further research. Apigenin (APG) is known as a flavonoid compound and natural antioxidant. The purpose of this study was to assess the ameliorative role of APG against multiwall CNT (MWCNT)-induced kidney toxicity in rats.
View Article and Find Full Text PDFAtmospheric parameters play a vital role in the dispersion of air pollutants. Benzene is a confirmed human carcinogen. It is also a neurotoxin and an irritant compound.
View Article and Find Full Text PDFThe Mixture exposure to pristine multi-walled carbon nanotubes (P-MWCNTs) and polycyclic aromatic hydrocarbons (PAHs) such as benzo α pyrene (BaP) in the environment is inevitable. Assessment toxicity of P-MWCNTs and BaP individually may not provide sufficient toxicological information. The objective of this work is to investigate the combined toxicity of P-MWCNTs and BaP in human epithelial lung cells (A549).
View Article and Find Full Text PDFOccupational and environmental exposures to carbon-based materials in nano- and micro-size have been reported. There is incomplete information on the impact of size on the toxicity of carbon-based materials. The objective of this study is to compare the toxicity of graphite, short multi-walled carbon nanotubes (S-MWCNTs), and long multi-walled carbon nanotubes (L-MWCNTs) in lung cells (A 549).
View Article and Find Full Text PDFIn theenvironment, co-exposure to short-multiwalled carbon nanotubes (S-MWCNTs) and polycyclic aromatic compounds (PAHs) has been reported. In the co-exposure condition, the adsorption of PAHs onto MWCNTs may reduce PAHs toxic effect. The objective of this study was to investigate the cytotoxicity of S-MWCNTs and benzo[a]pyrene (B[a]P) individually, and in combination in human lung cell lines (A549).
View Article and Find Full Text PDFBackground: Metal co-exposure of human subjects is an important matter of public health concern. It has been shown that Acetylcholinesterase activity is a suitable biomarker for the neurological risk assessment of some metals. A few studies have reported neurotoxicity risk among humans in co-exposure to chromium and nickel.
View Article and Find Full Text PDFCo-exposure to carboxylic acid functionalized multi-walled carbon nanotubes (F-MWCNTs) and polycyclic aromatic hydrocarbons (PAHs) such as benzo a pyrene (BaP) in ambient air have been reported. Adsorption of BaP to F-MWCNTs can influence combined toxicity. Studying individual toxicity of F-MWCNTs and BaP might give unrealistic data.
View Article and Find Full Text PDFThere has been an increasing concern about the continuous and the sudden release of volatile organic pollutants from petroleum refineries and occupational and environmental exposures. Benzene is one of the most prevalent volatile compounds, and it has been addressed by many authors for its potential toxicity in occupational and environmental settings. Due to the complexities of sampling and analysis of benzene in routine and accidental situations, a reliable estimation of the benzene concentration in the outdoor setting of refinery using a computational fluid dynamics (CFD) could be instrumental for risk assessment of occupational exposure.
View Article and Find Full Text PDFBackground: Occupational exposure to dust leads to acute and chronic respiratory diseases, occupational asthma, and depressed lung function. In the light of a lack of comprehensive studies on the exposure of Iranian workers to wood dusts, the objective of this study was to monitor the occupational exposure to wood dust and bioaerosol, and their correlation with the lung function parameters in chipboard manufacturing industry workers.
Materials And Methods: A cross-sectional study was conducted on chipboard workers in Golestan Province; a total of 150 men (100 exposed cases and 50 controls) were assessed.
Background: Foundry workers are occupationally exposed to hazardous substances such as silica dusts and toxic gases. The aim of this study was to examine the effects of simultaneous exposure to complex mixtures of silica dust, formaldehyde, and triethylamine on lung function parameters.
Study Design: A cross-sectional study.
Vinyl chloride monomer (VCM) is widely used in the production of polyvinyl chloride (PVC) plastics. VCM is recognized as a confirmed human and animal carcinogenic compound. Recent studies have reported poor health of plastic workers, even having exposure at concentrations below the permissible limit to VCM.
View Article and Find Full Text PDF