In exploring nature's potential in addressing liver-related conditions, this study investigates the therapeutic capabilities of flavonoids. Utilizing methodologies, we focus on flavone and its analogs (-) to assess their therapeutic potential in treating liver diseases. Molecular change calculations using density functional theory (DFT) were conducted on these compounds, accompanied by an evaluation of each analog's physiochemical and biochemical properties.
View Article and Find Full Text PDFPolymers (Basel)
October 2023
This study reports on the synthesis and characterization of novel perfluorinated organic polymers with azo- and azomethine-based linkers using nucleophilic aromatic substitution. The polymers were synthesized via the incorporation of decafluorobiphenyl and hexafluorobenzene linkers with diphenols in the basic medium. The variation in the linkers allowed the synthesis of polymers with different fluorine and nitrogen contents.
View Article and Find Full Text PDFA new Schiff base, 4-((1E,2E)-3-(furan-2-yl)allylidene)amino)-N-(5-methylisoxazol-3-yl) benzene-sulfonamide (L), was synthesized by thermal condensation of 3-(2-furyl)acrolein and sulfamethoxazole (SMX), and the furan Schiff base (L) was converted to a phenol Schiff base (L') according to the Diels-Alder [4 + 2] cycloaddition reaction and studied experimentally. The structural and spectroscopic properties of the Schiff base were also corroborated by utilizing density functional theory (DFT) calculations. Furthermore, a series of lanthanide and transition metal complexes of the Schiff base were synthesized from the nitrate salts of Gd, Sm, Nd, and Zn (L, L, L, and L), respectively.
View Article and Find Full Text PDFThermal decomposition of high-fluorine content PFAS streams for the disposal of old generations of concentrates of firefighting foams, exhausted ion-exchanged resins and granular activated carbon, constitutes the preferred method for destruction of these materials. This contribution studies the thermal transformation of perfluoropentanoic acid (CFC(O)OH, PFPA), as a model PFAS species, in gas-phase reactions over broad ranges of temperature and residence time, which characterise incinerators and cement kilns. Our focus is only on gas-phase reactions, to formulate a gas-phase submodel that, in future, could be used in comprehensive simulation of thermal destruction of PFAS; such comprehensive models will need to comprise fluorine mineralisation on flyash and in clinker material.
View Article and Find Full Text PDFA thorough computational study of a thermal degradation mechanism of 2-ethoxyethanol (2-EE) in the gas phase has been implemented using G3MP2 and G3B3 methods. The stationary point geometries were optimized at the B3LYP functional utilizing the 6-31G(d) basis set. Intrinsic reaction coordinate analysis was performed to determine the transition states on the potential energy surfaces.
View Article and Find Full Text PDFUV-Vis spectroscopy is used to study the charge transfer complexes of thiacrown ethers - with fullerene. The size of TCE1-6 and the nature of the heteroatoms (N, O and S) have been systematically changed to examine the effect of these factors on the HOMO/LUMO energy levels, the optical energy gap and the interactions between TCE's and C60. The negative and positive values of ΔS designate the structural forming method and the randomness of the free solvent molecules, respectively.
View Article and Find Full Text PDFA detailed computational study of the atmospheric reaction of the simplest Criegee intermediate CHOO with methane has been performed using the density functional theory (DFT) method and high-level calculations. Solvation models were utilized to address the effect of water molecules on prominent reaction steps and their associated energies. The structures of all proposed mechanisms were optimized using B3LYP functional with several basis sets: 6-31G(d), 6-31G (2df,p), 6-311++G(3df,3pd) and at M06-2X/6-31G(d) and APFD/6-31G(d) levels of theory.
View Article and Find Full Text PDFA detailed computational study of the dehydrogenation reaction of trans-propylamine (trans-PA) in the gas phase has been performed using density functional method (DFT) and CBS-QB3 calculations. Different mechanistic pathways were studied for the reaction of n-propylamine. Both thermodynamic functions and activation parameters were calculated for all investigated pathways.
View Article and Find Full Text PDFMonoterpenes represent a class of hydrocarbons consisting of two isoprene units. Like many other terpenes, monoterpenes emerge mainly from vegetation, indicating their significance in both atmospheric chemistry and pharmaceutical and food industries. The atmospheric recycling of monoterpenes constitutes a major source of secondary organic aerosols.
View Article and Find Full Text PDFA detailed computational study of the decomposition reaction mechanisms of -propylamine (-PA), -propylamine (-PA), and the cis-isomer of its protonated form (-HPA) has been carried out. Fourteen major pathways with their kinetic and thermodynamic parameters are reported. All reported reactions have been located with a concerted transition state, leading to significant products that agree with previous theoretical and experimental studies.
View Article and Find Full Text PDFPromoting the production of industrially important aromatic chloroamines over transition-metal nitrides catalysts has emerged as a prominent theme in catalysis. This contribution provides an insight into the reduction mechanism of -chloronitrobenzene (-CNB) to -chloroaniline (-CAN) over the γ-MoN(111) surface by means of density functional theory calculations. The adsorption energies of various molecularly adsorbed modes of -CNB were computed.
View Article and Find Full Text PDFA computational study of the formation of secondary ozonide (SOZ) from the Criegee intermediates (CIs) of sabinene, including hydration reactions with HO and 2HO, was performed. All of the geometries were optimized at the B3LYP and M06-2X with several basis sets. Further single-point energy calculation at the CCSD(T) was performed.
View Article and Find Full Text PDFGlutamine--a popular nutritional supplement, non-toxic amino acid, and an essential interorgan and intercellular ammonia transporter--can destroy the neurons' mitochondria. When glutamine enters (like a Trojan horse) into the mitochondria, in the presence of glutaminase, it reacts with water and yields glutamate and excess ammonia which opens gates in the membrane of the mitochondria and thereby destroys it. The mechanistic details underlying the molecular basis of the catabolic production of excess ammonia remain unclear.
View Article and Find Full Text PDFMotivated by the necessity to understand the pyrolysis of alkylated amines, unimolecular decomposition of acetamide is investigated herein as a model compound. Standard heats of formation, entropies, and heat capacities, are calculated for all products and transition structures using several accurate theoretical levels. The potential energy surface is mapped out for all possible channels encountered in the pyrolysis of acetamide.
View Article and Find Full Text PDFThe potential energy surface for the unimolecular decomposition of thiophenol (C(6)H(5)SH) is mapped out at two theoretical levels; BB1K/GTlarge and QCISD(T)/6-311+G(2d,p)//MP2/6-31G(d,p). Calculated reaction rate constants at the high pressure limit indicate that the major initial channel is the formation of C(6)H(6)S at all temperatures. Above 1000 K, the contribution from direct fission of the S-H bond becomes important.
View Article and Find Full Text PDFThe mechanism for the deamination of guanine with H(2)O, OH(-), H(2)O/OH(-) and for GuaH(+) with H(2)O has been investigated using ab initio calculations. Optimized geometries of the reactants, transition states, intermediates, and products were determined at RHF/6-31G(d), MP2/6-31G(d), B3LYP/6-31G(d), and B3LYP/6-31+G(d) levels of theory. Energies were also determined at G3MP2, G3MP2B3, G4MP2, and CBS-QB3 levels of theory.
View Article and Find Full Text PDFMechanisms for the deamination reaction of cytosine with H 2O/OH (-) and 2H 2O/OH (-) to produce uracil were investigated using ab initio calculations. Optimized geometries of reactants, transition states, intermediates, and products were determined at MP2 and B3LYP using the 6-31G(d) basis set and at B3LYP/6-31+G(d) levels of theory. Single point energies were also determined at MP2/G3MP2Large and G3MP2 levels of theory.
View Article and Find Full Text PDFThe mechanism for the deamination reaction of cytosine with H(2)O and OH(-) to produce uracil was investigated using ab initio calculations. Optimized geometries of reactants, transition states, intermediates, and products were determined at RHF/6-31G(d), MP2/6-31G(d), and B3LYP/6-31G(d) levels and for anions at the B3LYP/6-31+G(d) level. Single-point energies were also determined at B3LYP/6-31+G(d), MP2/GTMP2Large, and G3MP2 levels of theory.
View Article and Find Full Text PDF