Plasmonic nanostructures are good candidates for refractive index sensing applications through the surface plasmon resonance due to their strong dependence on the surrounding dielectric media. However, typically low quality-factor limits their application in sensing devices. To improve the quality-factor, we have experimentally and theoretically investigated two-dimensional gold nanoparticle gratings situated on top of a waveguide.
View Article and Find Full Text PDFA biological photoinduced fermentation process provides an alternative to traditional hydrogen productions. In this study, biohydrogen production was investigated at near IR region coupled to a near-field enhancement by silica-core gold-shell nanoparticles (NPs) over a range of acetate concentrations (5-40 mM) and light intensities (11-160 W/m). The kinetic data were modeled using modified Monod equations containing light intensity effects.
View Article and Find Full Text PDFVarifocal optics have a variety of applications in imaging systems. Metasurfaces offer control of the phase, transmission, and polarization of light using subwavelength engineered structures. However, conventional metasurface designs lack dynamic wavefront shaping which limits their application.
View Article and Find Full Text PDFThis work presents the design and fabrication of polymeric, structural optical filters that simultaneously focus light. These filters represent a novel, to the best of our knowledge, design at the boundary between diffractive optics and metasurfaces that may provide significant advantages for both digital and hyperspectral imaging. Filters for visible and near-infrared wavelengths were designed using finite-difference time-domain (FDTD) simulations.
View Article and Find Full Text PDFThe simultaneous elimination of organic waste and the production of clean fuels will have an immense impact on both the society and the industrial manufacturing sector. The enhanced understanding of the interface between nanoparticles and photo-responsive bacteria will further advance the knowledge of their interactions with biological systems. Although literature shows the production of gases by photobacteria, herein, we demonstrated the integration of photonics, biology, and nanostructured plasmonic materials for hydrogen production with a lower greenhouse CO gas content at quantified light energy intensity and wavelength.
View Article and Find Full Text PDFVariable-pressure electron-beam lithography (VP-EBL) employs an ambient gas at subatmospheric pressure to reduce charging of insulating films and substrates during electron exposure. In this work, VP-EBL proves to be an efficient method for patterning a widely used, but challenging to process, fluoropolymer, Teflon AF. However, rather than solely mitigating charging, the ambient gas is found to alter the radiation chemistry of the exposure process.
View Article and Find Full Text PDF