Publications by authors named "Mansell A"

NLRP1, while the first inflammasome described, has only recently begun to gain significant attention in disease pathology, inflammation research, and potentially, as a therapeutic target. Recently identified human variants provide key insights into NLRP1 biology while its unique expression in barrier cells such as keratinocytes and airway epithelial cells has aligned with new, human specific agonists. This differentiates NLRP1 from other inflammasomes such as NLRP3 and identifies it as a key therapeutic target in inflammatory diseases.

View Article and Find Full Text PDF

Background: Hendra virus is an emerging virus with a geographically broad host reservoir. In humans, Hendra virus causes excessive inflammatory disease of the lung and nervous system. Our current understanding as to how Hendra virus or what factors induce inflammation is limited and as such, there are currently no therapeutic options available for patients who contract Hendra virus.

View Article and Find Full Text PDF

Excessive inflammation and tissue damage during severe influenza A virus (IAV) infection can lead to the development of fatal pulmonary disease. Pyroptosis is a lytic and pro-inflammatory form of cell death executed by the pore-forming protein gasdermin D (GSDMD). In this study, we investigated a potential role for GSDMD in promoting the development of severe IAV disease.

View Article and Find Full Text PDF

The interleukin-1 family members, IL-1β and IL-18, are processed into their biologically active forms by multi-protein complexes, known as inflammasomes. Although the inflammasome pathways that mediate IL-1β processing in myeloid cells have been defined, those involved in IL-18 processing, particularly in non-myeloid cells, are still not well understood. Here we report that the host defence molecule NOD1 regulates IL-18 processing in mouse epithelial cells in response to the mucosal pathogen, Helicobacter pylori.

View Article and Find Full Text PDF

Objectives: Inflammasomes induce maturation of the inflammatory cytokines IL-1β and IL-18, whose activity is associated with the pathophysiology of a wide range of infectious and inflammatory diseases. As validated therapeutic targets for the treatment of acute and chronic inflammatory diseases, there has been intense interest in developing small-molecule inhibitors to target inflammasome activity and reduce disease-associated inflammatory burden.

Methods: We examined the therapeutic potential of a novel small-molecule inhibitor, and associated derivatives, termed ADS032 to target and reduce inflammasome-mediated inflammation .

View Article and Find Full Text PDF

Silicosis is an untreatable occupational lung disease caused by chronic inhalation of crystalline silica. Cyclical release and reuptake of silica particles by macrophages and airway epithelial cells causes repeated tissue damage, characterized by widespread inflammation and progressive diffuse fibrosis. While inhalation is the main route of entry for silica particles in humans, most preclinical studies administer silica via the intratracheal route.

View Article and Find Full Text PDF

Introduction: Preeclampsia is a life-threatening disorder of pregnancy unique to humans. Interleukin (IL)11 is elevated in serum from pregnancies that subsequently develop early-onset preeclampsia and pharmacological elevation of IL11 in pregnant mice causes the development of early-onset preeclampsia-like features (hypertension, proteinuria, and fetal growth restriction). However, the mechanism by which IL11 drives preeclampsia is unknown.

View Article and Find Full Text PDF

Silicosis is a multifaceted lung disease, characterized by persistent inflammation and structural remodeling. Despite its poor prognosis, there are no treatments currently available for patients with silicosis. Recent preclinical findings in models of lung fibrosis have suggested a major role for the NLRP3 (nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3) inflammasome in silica-driven inflammation and fibrosis.

View Article and Find Full Text PDF

TLRs reprogram macrophage metabolism, enhancing glycolysis and promoting flux through the tricarboxylic acid cycle to enable histone acetylation and inflammatory gene expression. The histone deacetylase (HDAC) family of lysine deacetylases regulates both TLR-inducible glycolysis and inflammatory responses. Here, we show that the TLR4 agonist LPS, as well as agonists of other TLRs, rapidly increase enzymatic activity of the class IIa HDAC family (HDAC4, 5, 7, 9) in both primary human and murine macrophages.

View Article and Find Full Text PDF

IL-18 (interleukin-18) is elevated in hypertensive patients, but its contribution to high blood pressure and end-organ damage is unknown. We examined the role of IL-18 in the development of renal inflammation and injury in a mouse model of low-renin hypertension. Hypertension was induced in male C57BL6/J (WT) and IL-18−/− mice by uninephrectomy, deoxycorticosterone acetate (2.

View Article and Find Full Text PDF

Hyperinflammatory responses including the production of NLRP3-dependent interleukin (IL)-1β is a characteristic feature of severe and fatal influenza A virus (IAV) infections. The NLRP3 inflammasome has been shown to play a temporal role during severe IAV immune responses, with early protective and later detrimental responses. However, the specific contribution of IL-1β in modulating IAV disease in vivo is currently not well defined.

View Article and Find Full Text PDF

Ovarian aging is a natural process characterized by follicular depletion and a reduction in oocyte quality, resulting in loss of ovarian function, cycle irregularity and eventually infertility and menopause. The factors that contribute to ovarian aging have not been fully characterized. Activation of the NLRP3 inflammasome has been implicated in age-associated inflammation and diminished function in several organs.

View Article and Find Full Text PDF

Reproductive ageing in females is defined by a progressive decline in follicle number and oocyte quality. This is a natural process that leads to the loss of fertility and ovarian function, cycle irregularity and eventually menopause or reproductive senescence. The factors that underlie the natural depletion of follicles throughout reproductive life are poorly characterised.

View Article and Find Full Text PDF

Sepsis remains to be a major contributor to mortality in ICUs, and immune suppression caused by immune cell apoptosis determines the overall patient survival. However, diagnosis of sepsis-induced lymphopenia remains problematic with no accurate prognostic techniques or biomarkers for cell death available. Developing reliable prognostic tools for sepsis-mediated cell death is not only important for identifying patients at increased risk of immune suppression but also to monitor treatment progress of currently trialed immunotherapy strategies.

View Article and Find Full Text PDF

Detection of microbial components such as lipopolysaccharide (LPS) by Toll-like receptor 4 (TLR4) on macrophages induces a robust pro-inflammatory response that is dependent on metabolic reprogramming. These innate metabolic changes have been compared to aerobic glycolysis in tumour cells. However, the mechanisms by which TLR4 activation leads to mitochondrial and glycolytic reprogramming are unknown.

View Article and Find Full Text PDF

MR activation in macrophages is critical for the development of cardiac inflammation and fibrosis. We previously showed that MR activation modifies macrophage pro-inflammatory signalling, changing the cardiac tissue response to injury via both direct gene transcription and JNK/AP-1 second messenger pathways. In contrast, MR-mediated renal electrolyte homeostasis is critically determined by DNA-binding-dependent processes.

View Article and Find Full Text PDF

Interleukin (IL)-37 is a member of the IL-1 family of cytokines. Although its broad anti-inflammatory properties are well described, the effects of IL-37 on inflammasome function remain poorly understood. Performing gene expression analyses, ASC oligomerization/speck assays and caspase-1 assays in bone marrow-derived macrophages (BMDM), and employing an in vivo endotoxemia model, we studied how IL-37 affects the expression and maturation of IL-1β and IL-18, inflammasome activation, and pyroptosis in detail.

View Article and Find Full Text PDF

Background And Purpose: Severe influenza A virus (IAV) infections are associated with damaging hyperinflammation that can be fatal. There is an urgent need to identify new therapeutic agents to treat severe and pathogenic IAV infections. Repurposing of drugs with an existing and studied pharmacokinetic and safety profile is a highly attractive potential strategy.

View Article and Find Full Text PDF

MyD88 adaptor-like (Mal) protein is the most polymorphic of the four key adaptor proteins involved in TLR signaling. TLRs play a critical role in the recognition and immune response to pathogens through activation of the prototypic inflammatory transcription factor NF-κB. The study of single nucleotide polymorphisms in TLRs, adaptors, and signaling mediators has provided key insights into the function of the corresponding genes but also into the susceptibility to infectious diseases in humans.

View Article and Find Full Text PDF

Aims: Renal inflammation, leading to fibrosis and impaired function is a major contributor to the development of hypertension. The NLRP3 inflammasome mediates inflammation in several chronic diseases by processing the cytokines pro-interleukin (IL)-1β and pro-IL-18. In this study, we investigated whether MCC950, a recently-identified inhibitor of NLRP3 activity, reduces blood pressure (BP), renal inflammation, fibrosis and dysfunction in mice with established hypertension.

View Article and Find Full Text PDF

Outer membrane vesicles (OMVs) are constitutively produced by Gram-negative bacteria both in vivo and in vitro. These lipid-bound structures carry a range of immunogenic components derived from the parent cell, which are transported into host target cells and activate the innate immune system. Recent advances in the field have shed light on some of the multifaceted roles of OMVs in host-pathogen interactions.

View Article and Find Full Text PDF

Inflammation is an integral aspect of influenza A virus (IAV) infection. It is critical to induce an antiviral environment to reduce viral replication and dissemination, while also being essential to the development and maturation of adaptive immunity, which ultimately resolves infection. Conversely, excessive pulmonary inflammation and cellular influx are characteristic of lethal IAV infections.

View Article and Find Full Text PDF

Macrophage migration inhibitory factor (MIF) exerts multiple effects on immune cells, as well as having functions outside the immune system. MIF can promote inflammation through the induction of other cytokines, including TNF, IL-6, and IL-1 family cytokines. Here, we show that inhibition of MIF regulates the release of IL-1α, IL-1β, and IL-18, not by affecting transcription or translation of these cytokines, but via activation of the NLRP3 inflammasome.

View Article and Find Full Text PDF

The lung is constantly exposed to both environmental and microbial challenge. As a "contained" organ, it also constitutes an excellent "self-contained" tissue to examine inflammatory responses and cellular infiltration into a diseased organ. Influenza A virus (IAV) causes both mild and severe inflammation that is strain specific following infection of the lung epithelium that spreads to other cells of the lung environment.

View Article and Find Full Text PDF

Outer membrane vesicles (OMVs) are proteoliposomes blebbed from the surface of Gram-negative bacteria. Chronic periodontitis is associated with an increase in subgingival plaque of Gram-negative bacteria, , and . In this study, we investigated the immune-modulatory effects of , and OMVs on monocytes and differentiated macrophages.

View Article and Find Full Text PDF