Immune checkpoints are crucial for regulating immune responses and maintaining self-tolerance, as they play a pivotal role in preventing autoimmunity and facilitating tumor immune evasion. This review concentrates on the immune checkpoint molecules PSGL-1 and VISTA. Both molecules are highly expressed in hematopoietic cells, including T cells and myeloid cells.
View Article and Find Full Text PDFLILRB4, a myeloid inhibitory receptor belonging to the family of leukocyte immunoglobulin-like receptors (LILRs/LIRs), plays a pivotal role in the regulation of immune tolerance. LILRB4 primarily mediates suppressive immune responses by transmitting inhibitory signals through immunoreceptor tyrosine-based inhibitory motifs (ITIMs). This immune checkpoint molecule has gained considerable attention due to its potent regulatory functions.
View Article and Find Full Text PDFMajor histocompatibility complex class I related chain A (MICA) is an important and stress-induced ligand of the natural killer group 2 member D receptor (NKG2D) that is expressed in various tumour cells. Given that the MICA/NKG2D signalling system is critically embedded in the innate and adaptive immune responses, it is particularly involved in the surveillance of cancer and viral infections. Emerging evidence has revealed the important roles of non-coding RNAs (ncRNAs) including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in different cancer types.
View Article and Find Full Text PDFPhenylpropanoids are crucial for the growth and development of plants and their interaction with the environment. As key transcriptional regulators of plant growth and development, MYB-like transcription factors play a vital role in the biosynthesis of phenylpropanoid metabolites. In this study, we functionally characterized , a gene that encodes an R2R3-MYB transcription factor.
View Article and Find Full Text PDF