Publications by authors named "Manoucher Vafaee"

Aim: Decreased activity of the mitochondrial electron transport chain (ETC) has been implicated in the pathogenesis of Parkinson's disease (PD). This model would most likely predict a decrease in the rate of cerebral oxygen consumption (CMRO(2)). To test this hypothesis, we compared CMRO(2) and cerebral blood flow (CBF) PET scans from PD patients and healthy controls.

View Article and Find Full Text PDF

The distribution of brain oxidative metabolism values among healthy humans is astoundingly wide for a measure that reflects normal brain function and is known to change very little with most changes of brain function. It is possible that the part of the oxygen consumption rate that is coupled to ATP turnover is the same in all healthy human brains, with different degrees of uncoupling explaining the variability of total oxygen consumption among people. To test the hypothesis that about 75% of the average total oxygen consumption of human brains is common to all individuals, we determined the variability in a large group of normal healthy adults.

View Article and Find Full Text PDF

The objective of this study was to quantify regional renal blood flow in humans. In nine young volunteers on a controlled diet, the lower abdomen was CT-scanned, and regional renal blood flow was determined by positron emission tomography (PET) scanning using H(2)(15)O as tracer. Measurements were performed at baseline, during constant intravenous infusion of nitric oxide (NO) donor glyceryl nitrate and after intravenous injection of NO synthase inhibitor N(ω)-monomethyl-L-arginine (L-NMMA).

View Article and Find Full Text PDF

Introduction: In positron emission tomography (PET) studies of cerebral blood flow (CBF) and metabolism, the large interindividual variation commonly is minimized by normalization to the global mean prior to statistical analysis. This approach requires that no between-group or between-state differences exist in the normalization region. Given the variability typical of global CBF and the practical limit on sample size, small group differences in global mean easily elude detection, but still bias the comparison, with profound consequences for the physiological interpretation of the results.

View Article and Find Full Text PDF