Publications by authors named "Manon Slot"

Regulatory T (TREG) cells develop via a program orchestrated by the transcription factor forkhead box protein P3 (FOXP3). Maintenance of the TREG cell lineage relies on sustained FOXP3 transcription via a mechanism involving demethylation of cytosine-phosphate-guanine (CpG)-rich elements at conserved non-coding sequences (CNS) in the FOXP3 locus. This cytosine demethylation is catalyzed by the ten-eleven translocation (TET) family of dioxygenases, and it involves a redox reaction that uses iron (Fe) as an essential cofactor.

View Article and Find Full Text PDF

Vγ9Vδ2 T cells are effector cells with proven antitumor efficacy against a broad range of cancers. This study aimed to assess the antitumor activity and safety of a bispecific antibody directing Vγ9Vδ2 T cells to EGFR-expressing tumors. An EGFR-Vδ2 bispecific T-cell engager (bsTCE) was generated, and its capacity to activate Vγ9Vδ2 T cells and trigger antitumor activity was tested in multiple in vitro, in vivo, and ex vivo models.

View Article and Find Full Text PDF

CD4CD25FOXP3 regulatory T (Treg) cells control immunological tolerance. Treg cells are generated in the thymus (tTreg) or in the periphery. Their superior lineage fidelity makes tTregs the preferred cell type for adoptive cell therapy (ACT).

View Article and Find Full Text PDF

The Ig superfamily protein glycoprotein A33 (GPA33) has been implicated in immune dysregulation, but little is known about its expression in the immune compartment. Here, we comprehensively determined GPA33 expression patterns on human blood leukocyte subsets, using mass and flow cytometry. We found that GPA33 was expressed on fractions of B, dendritic, natural killer and innate lymphoid cells.

View Article and Find Full Text PDF
Article Synopsis
  • FOXP3-expressing regulatory T (Treg) cells help maintain immune system balance, with two main types: thymic Treg (tTreg) cells from the thymus and peripheral Treg (pTreg) cells derived from mature T cells.
  • tTreg cells have a stronger commitment to their lineage compared to pTreg cells, making them safer for therapies targeting autoimmune and inflammatory diseases, although identifying these cells in humans has been challenging.
  • Recent research discovered that the GPA33 protein can help distinguish human tTreg cells from pTreg cells, as GPA33 Treg cells are stable, suppressive, and lack the ability to produce inflammatory cytokines, suggesting a potential method for isolating
View Article and Find Full Text PDF

During pregnancy, maternal T cells can enter the foetus, leading to maternal-foetal chimerism. This phenomenon may affect how leukaemia patients respond to transplantation therapy using stem cells from cord blood (CB). It has been proposed that maternal T cells, primed to inherited paternal HLAs, are present in CB transplants and help to suppress leukaemic relapse.

View Article and Find Full Text PDF

To obtain a molecular definition of regulatory T (Treg) cell identity, we performed proteomics and transcriptomics on various populations of human regulatory and conventional CD4 T (Tconv) cells. A protein expression signature was identified that defines all Treg cells, and another signature that defines effector Treg cells. These signatures could not be extrapolated from transcriptome data.

View Article and Find Full Text PDF

Cotransplantation of CD34(+) hematopoietic stem and progenitor cells (HSPCs) with mesenchymal stromal cells (MSCs) enhances HSPC engraftment. For these applications, MSCs are mostly obtained from bone marrow (BM). However, MSCs can also be isolated from the Wharton's jelly (WJ) of the human umbilical cord.

View Article and Find Full Text PDF

Persistent complete donor chimerism is an important clinical indicator for remissions of hematological malignancies after HLA-matched allogeneic stem cell transplantation (SCT). However, the mechanisms mediating the persistence of complete donor chimerism are poorly understood. The frequent coincidence of complete donor chimerism with graft-versus-leukemia effects and graft-versus-host disease suggests that immune responses against minor histocompatibility antigens (mHags) are playing an important role in suppressing the host hematopoiesis after allogeneic SCT.

View Article and Find Full Text PDF

Background: Expansion of human cord blood (CB) CD34+ cells with thrombopoietin (TPO) can accelerate delayed platelet (PLT) recovery after transplantation into immunodeficient mice. Clinical implementation, however, will depend on practical and effective protocols. The best timing of TPO expansion in relation to cryopreservation in this respect is unknown.

View Article and Find Full Text PDF

After cord blood (CB) transplantation, early platelet recovery in immune-deficient mice is obtained by expansion of CB CD34(+) cells with thrombopoietin (TPO) as single growth factor. Moreover, improvement of hematopoietic engraftment has been shown by cotransplantation of mesenchymal stem cells (MSC). We investigated whether a combination of both approaches would further enhance the outcome of CB transplantation in NOD SCID mice.

View Article and Find Full Text PDF

Human cord blood (CB) hematopoietic stem cell (HSC) transplants demonstrate delayed early neutrophil and platelet recovery and delayed longer term immune reconstitution compared to bone marrow and mobilized peripheral blood transplants. Despite advances in enhancing early neutrophil engraftment, platelet recovery after CB transplantation is not significantly altered when compared to contemporaneous controls. Recent studies have identified a platelet-biased murine HSC subset, maintained by thrombopoietin (TPO), which has enhanced capacity for short- and long-term platelet reconstitution, can self-renew, and can give rise to myeloid- and lymphoid-biased HSCs.

View Article and Find Full Text PDF

Background: Autologous cord blood (CB) red blood cells (RBCs) can partly substitute transfusion needs in premature infants suffering from anemia. To explore whether expanded CB cells could provide additional autologous cells suitable for transfusion, we set up a simple one-step protocol to expand premature CB cells.

Study Design And Methods: CB buffy coat cells and isolated CD34-positive (CD34(pos) ) cells from premature and full-term CB and adult blood were tested with several combinations of growth factors while omitting xenogeneic proteins from the culture medium.

View Article and Find Full Text PDF

Objectives: Hematopoietic recovery, in particular platelet reconstitution, can be severely delayed after transplantation with cord blood (CB) stem cells (SC). Expansion of CB SC may be one way to improve the recovery, but there is concern that ex vivo expansion compromises the repopulating ability of SC.

Methods: We used a short-term expansion protocol with TPO as single growth factor.

View Article and Find Full Text PDF