Publications by authors named "Manon Maroquenne"

The development of lipid-based mRNA delivery systems has significantly facilitated recent advances in mRNA-based therapeutics. Liposomes, as the pioneering class of mRNA vectors, continue to lead in clinical trials. We previously developed a histidylated liposome that demonstrated efficient nucleic acid delivery.

View Article and Find Full Text PDF
Article Synopsis
  • Metazoan chromosomes are organized into regions called TADs, which help regulate gene activity, but the exact mechanisms connecting these domains to transcription remain unclear.
  • Using Capture Hi-C techniques, researchers examined changes in chromatin structure during mouse thymocyte development, finding specific remodeling events associated with gene activation.
  • The study showed that gene transcription can influence chromatin structure, revealing that transcriptional processes play a key role in shaping how chromosomes are organized.
View Article and Find Full Text PDF

Although the etiology of intervertebral disc degeneration is still unresolved, the nutrient paucity resulting from its avascular nature is suspected of triggering degenerative processes in its core: the nucleus pulposus (NP). While severe hypoxia has no significant effects on NP cells, the impact of glucose depletion, such as found in degenerated discs (0.2-1 mM), is still uncertain.

View Article and Find Full Text PDF

Adipose tissue-derived mesenchymal stem cells (ATSCs) have been used as an alternative to bone marrow-derived mesenchymal stem cells (BMSCs) for bone tissue engineering applications. The ability of ATSCs to promote new bone formation remains lower than that of BMSCs. This study aimed to investigate the mechanisms underlying osteogenicity differences between human ATSCs and BMSCs in ceramic constructs, focusing on the effects of inflammation on this process.

View Article and Find Full Text PDF

The spatiotemporal organization of chromatin influences many nuclear processes: from chromosome segregation to transcriptional regulation. To get a deeper understanding of these processes, it is essential to go beyond static viewpoints of chromosome structures, to accurately characterize chromatin's diffusion properties. We present GP-FBM: a computational framework based on Gaussian processes and fractional Brownian motion to extract diffusion properties from stochastic trajectories of labeled chromatin loci.

View Article and Find Full Text PDF