Publications by authors named "Manon Le Bel"

Viruses, particularly the Epstein-Barr virus (EBV) has long been suspected to exacerbate acute arthritic symptoms. However, the cell populations that contribute to import viruses into the inflamed tissues remain to be identified. In the present study, we have investigated the role of monocytes in the transport of Murid herpesvirus 68 (MHV-68), a mouse virus closely related to EBV, using the serum transfer-induced arthritis (STIA) model.

View Article and Find Full Text PDF

The signals that regulate the fate of circulating monocytes remain unknown. In the present study, we demonstrate that triggering of the NOD2 receptor by muramyl dipeptide (MDP) converts inflammatory Ly6C monocytes into patrolling Ly6C monocytes. Administration of MDP to Nr4a1 mice, which lack Ly6C monocytes, or to Ly6C-depleted mice led to the emergence of blood-patrolling monocytes with a profile similar to that of Ly6C monocytes, including high expression of CX3CR1 and LFA1.

View Article and Find Full Text PDF

Monocytes are central to the physiopathology of arthritis, but their roles in progression and resolution of the disease remain to be clarified. Using NR4A1 mice, which lack patrolling lymphocyte antigen 6C (Ly6C ) monocytes, we found that inflammatory Ly6C monocytes contribute to rapid development of arthritis in a serum transfer-induced arthritis (STIA) model. Our experiments suggest that patrolling monocytes do not promote the initiation and progression of arthritis in mice, as severity of symptoms was amplified in NR4A1 mice.

View Article and Find Full Text PDF

Leukotriene B4 (LTB4), a central mediator of inflammation, is well known for its chemoattractant properties on effectors cells of the immune system. LTB4 also has the ability to control microbial infection by improving host innate defenses through the release of antimicrobial peptides and modulation of intracellular Toll-like receptors (TLRs) expression in response to agonist challenge. In this report, we provide evidences that LTB4 acts on nucleotide-binging oligomerization domain 2 (NOD2) pathway to enhance immune response against influenza A infection.

View Article and Find Full Text PDF

Leukotriene B4 (LTB4) is an endogenous lipid mediator of inflammation derived from arachidonic acid by the sequential action of cytosolic phospholipase A2 and 5-lipoxygenase. This mediator was initially recognized for its involvement in the recruitment of neutrophils. However, in the last decade, LTB4 has been clearly demonstrated to play a significant role in the control of microbial infections through its ability to activate host innate defenses.

View Article and Find Full Text PDF

Pattern-recognition receptors such as Toll-like receptors (TLRs) are essential sensors implicated in the early and efficient innate immune response against pathogens. We have previously demonstrated that leukotriene B(4)(LTB(4)) has the capacity to enhance leukocyte responses to TLR9 ligands and to control viral infection. In this report, we provide evidence that LTB(4) treatment of human neutrophils leads to a potentiation in proinflammatory cytokine secretion induced by various myeloid differentiation factor 88-dependent TLR agonists.

View Article and Find Full Text PDF