Recent mechanistic models argue for a key role of rhythm processing in both speech production and speech perception. Patients with the non-fluent variant (NFV) of primary progressive aphasia (PPA) with apraxia of speech (AOS) represent a specific study population in which this link can be examined. Previously, we observed impaired rhythm processing in NFV with AOS.
View Article and Find Full Text PDFAphasia affects at least one third of stroke survivors, and there is increasing awareness that more fundamental deficits in auditory processing might contribute to impaired language performance in such individuals. We performed a comprehensive battery of psychoacoustic tasks assessing the perception of tone pairs and sequences across the domains of pitch, rhythm and timbre in 17 individuals with post-stroke aphasia and 17 controls. At the level of individual differences we demonstrated a correlation between metrical pattern (beat) perception and speech output fluency with strong effect (Spearman's rho = 0.
View Article and Find Full Text PDFAuditory processing disorder (APD) is defined as a specific deficit in the processing of auditory information along the central auditory nervous system, including bottom-up and top-down neural connectivity. Even though music comprises a big part of audition, testing music perception in APD population has not yet gained wide attention in research. This work tests the hypothesis that deficits in rhythm perception occur in a group of subjects with APD.
View Article and Find Full Text PDFUnderstanding the factors that influence language recovery in aphasia is important for improving prognosis and treatment. Chronic comprehension impairments in Wernicke's aphasia (WA) are associated with impairments in auditory and phonological processing, compounded by semantic and executive difficulties. This study investigated whether the recovery of auditory, phonological, semantic, or executive factors underpins the recovery from WA comprehension impairments by charting changes in the neuropsychological profile from the subacute to the chronic phase.
View Article and Find Full Text PDFThe human brain's ability to extract and encode temporal regularities and to predict the timing of upcoming events is critical for music and speech perception. This work addresses how these mechanisms deal with different levels of temporal complexity, here the number of distinct durations in rhythmic patterns. We use electroencephalography (EEG) to relate the mismatch negativity (MMN), a proxy of neural prediction error, to a measure of information content of rhythmic sequences, the Shannon entropy.
View Article and Find Full Text PDFFront Comput Neurosci
November 2018
One curious aspect of human timing is the organization of rhythmic patterns in small integer ratios. Behavioral and neural research has shown that adjacent time intervals in rhythms tend to be perceived and reproduced as approximate fractions of small numbers (e.g.
View Article and Find Full Text PDFPatients with non-fluent aphasias display impairments of expressive and receptive grammar. This has been attributed to deficits in processing configurational and hierarchical sequencing relationships. This hypothesis had not been formally tested.
View Article and Find Full Text PDFFront Hum Neurosci
September 2016
This work assesses one specific aspect of the relationship between auditory rhythm cognition and language skill: regularity perception. In a group of 26 adult participants, native speakers of 11 different native languages, we demonstrate a strong and significant correlation between the ability to detect a "roughly" regular beat and rapid automatized naming (RAN) as a measure of language skill (Spearman's rho, -0.47, p < 0.
View Article and Find Full Text PDFThe extent to which non-linguistic auditory processing deficits may contribute to the phenomenology of primary progressive aphasia is not established. Using non-linguistic stimuli devoid of meaning we assessed three key domains of auditory processing (pitch, timing and timbre) in a consecutive series of 18 patients with primary progressive aphasia (eight with semantic variant, six with non-fluent/agrammatic variant, and four with logopenic variant), as well as 28 age-matched healthy controls. We further examined whether performance on the psychoacoustic tasks in the three domains related to the patients' speech and language and neuropsychological profile.
View Article and Find Full Text PDFJ Autism Dev Disord
April 2018
Enhanced basic perceptual discrimination has been reported for pitch in individuals with autism spectrum conditions. We test whether there is a correlational pattern of enhancement across the broader autism phenotype and whether this correlation occurs for the discrimination of pitch, time and loudness. Scores on the Autism-Spectrum Quotient correlated significantly with the pitch discrimination (r = -0.
View Article and Find Full Text PDFBilateral, high-frequency stimulation of the basal ganglia (STN-DBS) is in widespread use for the treatment of the motor symptoms of Parkinson׳s disease (PD). We present here the first psychophysical investigation of the effect of STN-DBS upon perceptual timing in the hundreds of milliseconds range, with both duration-based (absolute) and beat-based (relative) tasks; 13 patients with PD were assessed with their STN-DBS 'on', 'off', and then 'on' again. Paired parametric analyses revealed no statistically significant differences for any task according to DBS status.
View Article and Find Full Text PDFWhy do some people have problems "feeling the beat"? Here we investigate participants with congenital impairments in musical rhythm perception and production. A web-based version of the Montreal Battery of Evaluation of Amusia was used to screen for difficulties with rhythmic processing in a large sample and we identified three "dysrhythmic" individuals who scored below cut-off for the rhythm subtest, but not the pitch-based subtests. Follow-up testing in the laboratory was conducted to characterize the nature of both rhythm perception and production deficits in these dysrhythmic individuals.
View Article and Find Full Text PDFThis work tests the hypothesis that language skill depends on the ability to incorporate streams of sound into an accurate temporal framework. We tested the ability of young English-speaking adults to process single time intervals and rhythmic sequences of such intervals, hypothesized to be relevant to the analysis of the temporal structure of language. The data implicate a specific role for the ability to process beat-based temporal regularities in phonological language and literacy skill.
View Article and Find Full Text PDFThe timing of perceptual events depends on an anatomically and functionally connected network comprising basal ganglia, cerebellum, pre-frontal cortex and supplementary motor area. Recent studies demonstrate the cerebellum to be involved in absolute, duration-based timing, but not in relative timing based on a regular beat. Conversely, functional involvement of the striatum is observed in relative timing, but its role in absolute timing is unclear.
View Article and Find Full Text PDFThe relationship between auditory processing and language skills has been debated for decades. Previous findings have been inconsistent, both in typically developing and impaired subjects, including those with dyslexia or specific language impairment. Whether correlations between auditory and language skills are consistent between different populations has hardly been addressed at all.
View Article and Find Full Text PDFWe assessed whether autistic traits are related to the ability to identify flavour. In general, the colour of the food or drink facilitates identification of its flavour. In the current study, the colour of drinks either provided congruent, incongruent or ambiguous (colourless) information about the flavour.
View Article and Find Full Text PDFObjective: This work investigates the nature of the comprehension impairment in Wernicke's aphasia (WA), by examining the relationship between deficits in auditory processing of fundamental, non-verbal acoustic stimuli and auditory comprehension. WA, a condition resulting in severely disrupted auditory comprehension, primarily occurs following a cerebrovascular accident (CVA) to the left temporo-parietal cortex. Whilst damage to posterior superior temporal areas is associated with auditory linguistic comprehension impairments, functional-imaging indicates that these areas may not be specific to speech processing but part of a network for generic auditory analysis.
View Article and Find Full Text PDFThis work tests the relationship between auditory and phonological skill in a non-selected cohort of 238 school students (age 11) with the specific hypothesis that sound-sequence analysis would be more relevant to phonological skill than the analysis of basic, single sounds. Auditory processing was assessed across the domains of pitch, time and timbre; a combination of six standard tests of literacy and language ability was used to assess phonological skill. A significant correlation between general auditory and phonological skill was demonstrated, plus a significant, specific correlation between measures of phonological skill and the auditory analysis of short sequences in pitch and time.
View Article and Find Full Text PDFPrevious studies investigating sensitivity to step changes in tempo and prediction of tone onset time have generally utilized isochronous sequences. This study investigates subjects' ability to detect deviations from a gradual change in the tempo of a tone sequence (experiment 1) and their judgment of the perceptually optimal timing of this tone (experiment 2). In experiment 1, inter-onset-intervals within pairs of eight-tone sequences followed a geometric progression to create a gradual tempo change.
View Article and Find Full Text PDFAuditory extinction and spatio-temporal order judgment (STOJ) were assessed in patients with acquired brain damage by systematically manipulating onset times in bilateral stimulation under free-field conditions. We tested the hypothesis that extinction will be reduced by increasing stimulus onset asynchrony. Two groups of patients with right-hemisphere (RH, n=17) or left-hemisphere (LH, n=17) damage were investigated in comparison to a healthy control group (n=12).
View Article and Find Full Text PDFFront Integr Neurosci
October 2012
Accurate timing is an integral aspect of sensory and motor processes such as the perception of speech and music and the execution of skilled movement. Neuropsychological studies of time perception in patient groups and functional neuroimaging studies of timing in normal participants suggest common neural substrates for perceptual and motor timing. A timing system is implicated in core regions of the motor network such as the cerebellum, inferior olive, basal ganglia, pre-supplementary, and supplementary motor area, pre-motor cortex as well as higher-level areas such as the prefrontal cortex.
View Article and Find Full Text PDFA role for the cerebellum in cognition has been proposed based on studies suggesting a profile of cognitive deficits due to cerebellar stroke. Such studies are limited in the determination of the detailed organisation of cerebellar subregions that are critical for different aspects of cognition. In this study we examined the correlation between cognitive performance and cerebellar integrity in a specific degeneration of the cerebellar cortex: Spinocerebellar Ataxia type 6 (SCA6).
View Article and Find Full Text PDFResearch on interval timing strongly implicates the cerebellum and the basal ganglia as part of the timing network of the brain. Here we tested the hypothesis that the brain uses differential timing mechanisms and networks--specifically, that the cerebellum subserves the perception of the absolute duration of time intervals, whereas the basal ganglia mediate perception of time intervals relative to a regular beat. In a functional magnetic resonance imaging experiment, we asked human subjects to judge the difference in duration of two successive time intervals as a function of the preceding context of an irregular sequence of clicks (where the task relies on encoding the absolute duration of time intervals) or a regular sequence of clicks (where the regular beat provides an extra cue for relative timing).
View Article and Find Full Text PDFThis study sought evidence for a specific cerebellar contribution to cognition by characterising the cognitive phenotype of Spinocerebellar Ataxia Type 6 (SCA-6); an autosomal dominant genetic disease which causes a highly specific late-onset cerebellar degeneration. A comprehensive neuropsychological assessment was administered to 27 patients with genetically confirmed SCA-6. General intellectual ability, memory and executive function were examined using internationally standardised tests (Wechsler Adult Intelligence Scale-III, Wechsler Memory Scale-III, Delis and Kaplan Executive Function System, Brixton Spatial Anticipation test).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2010
This work tests the hypothesis that the cerebellum is critical to the perception of the timing of sensory events. Auditory tasks were used to assess two types of timing in a group of patients with a stereotyped specific degeneration of the cerebellum: the analysis of single time intervals requiring absolute measurements of time, and the holistic analysis of rhythmic patterns based on relative measures of time using an underlying regular beat. The data support a specific role for the cerebellum only in the absolute timing of single subsecond intervals but not in the relative timing of rhythmic sequences with a regular beat.
View Article and Find Full Text PDF