Farnesoid X receptor α (FXRα, NR1H4) is a bile acid-activated nuclear receptor that regulates the expression of glycolytic and lipogenic target genes by interacting with the 9-cis-retinoic acid receptor α (RXRα, NR2B1). Along with cofactors, the FXRα proteins reported thus far in humans and rodents have been observed to regulate both isoform (α1-4)- and tissue-specific gene expression profiles to integrate energy balance and metabolism. Here, we studied the biological functions of an FXRα naturally occurring spliced exon 5 isoform (FXRαse5) lacking the second zinc-binding module of the DNA binding domain (DBD).
View Article and Find Full Text PDFThe rapid identification of early hits by fragment-based approaches and subsequent hit-to-lead optimization represents a challenge for drug discovery. To address this challenge, we created a strategy called "DOTS" that combines molecular dynamic simulations, computer-based library design (chemoDOTS) with encoded medicinal chemistry reactions, constrained docking, and automated compound evaluation. To validate its utility, we applied our DOTS strategy to the challenging target syntenin, a PDZ domain containing protein and oncology target.
View Article and Find Full Text PDFMembrane contact sites are functional nodes at which organelles reorganize metabolic pathways and adapt to changing cues. In , the nuclear envelope subdomain surrounding the nucleolus, very plastic and prone to expansion, can establish contacts with the vacuole and be remodeled in response to various metabolic stresses. While using genotoxins with unrelated purposes, we serendipitously discovered a fully new remodeling event at this nuclear subdomain: the nuclear envelope partitions into its regular contact with the vacuole and a dramatic internalization within the nucleus.
View Article and Find Full Text PDFSpermatogonial stem cells regenerate and maintain spermatogenesis throughout life, making testis a good model for studying stem cell biology. The effects of chemotherapy on fertility have been well-documented previously. This study investigates how busulfan, an alkylating agent that is often used for chemotherapeutic purposes, affects male fertility.
View Article and Find Full Text PDFBispecific antibodies are novel approaches of immunotherapy engaging immune cells to destroy tumor cells. Their structure is variable and underlies their pharmacocinetic properties. These coumpounds are now being evaluated across multiple hematological malignancies.
View Article and Find Full Text PDFSpermatogenesis is a process within the testis that leads to the production of spermatozoa. It is based on a population of spermatogonial stem cells, which have the capacity to self-renew and to differentiate throughout life to ensure the functions of reproduction are maintained. Male fertility disorders are responsible for half of the cases of infertility in couples worldwide.
View Article and Find Full Text PDFSyntenin stimulates exosome production and its expression is upregulated in many cancers and implicated in the spread of metastatic tumor. These effects are supported by syntenin PDZ domains interacting with syndecans. We therefore aimed to develop, through a fragment-based drug design approach, novel inhibitors targeting syntenin-syndecan interactions.
View Article and Find Full Text PDFThe hypothalamic-pituitary axis exert a major control over endocrine and exocrine testicular functions. The hypothalamic-pituitary axis corresponds to a cascade with the Gonadotropin Releasing Hormone secreted by the hypothalamus, which stimulates the synthesis and the release of Luteinizing Hormone (LH) and Follicle Stimulating Hormone by the gonadotropic cells of the anterior pituitary. The LH signaling pathway controls the steroidogenic activity of the Leydig cells via the activation of the luteinizing hormone/choriogonadotropin receptor.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
November 2019
The bile acid receptor Farnesoid-X-Receptor alpha (FXRα), a member of the nuclear receptor superfamily, is well known for its roles in the enterohepatic tract. In addition, FXRα regulates testicular physiology through the control of both endocrine and exocrine functions. The endocrine function of the Leydig cells is mainly controlled by the hypothalamo-pituitary axis viaLH/chorionic gonadotropin (CG).
View Article and Find Full Text PDFThe farnesoid-X-receptorα (FXRα; NR1H4) is one of the main bile acid (BA) receptors. During the last decades, through the use of pharmalogical approaches and transgenic mouse models, it has been demonstrated that the nuclear receptor FXRα controls numerous physiological functions such as glucose or energy metabolisms. It is also involved in the etiology or the development of several pathologies.
View Article and Find Full Text PDFε-Viniferin, a resveratrol dimer, is a naturally occurring stilbene that has been studied so far for its potential beneficial effects on human health. Its low water solubility, its photo-sensitivity and its low bioavailability make its applications in the food industry complicated. To overcome these limitations, ε-viniferin was encapsulated in phospholipid-based multi-lamellar liposomes (MLLs) called spherulites or onions.
View Article and Find Full Text PDFStructural and functional studies have provided numerous insights over the past years on how members of the nuclear hormone receptor superfamily tightly regulate the expression of drug-metabolizing enzymes and transporters. Besides the role of the farnesoid X receptor (FXR) in the transcriptional control of bile acid transport and metabolism, this review provides an overview on how this metabolic sensor prevents the accumulation of toxic byproducts derived from endogenous metabolites, as well as of exogenous chemicals, in coordination with the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR). Decrypting this network should provide cues to better understand how these metabolic nuclear receptors participate in physiologic and pathologic processes with potential validation as therapeutic targets in human disabilities and cancers.
View Article and Find Full Text PDFCholesterol is essential for mammalian cell functions and integrity. It is an important structural component maintaining the permeability and fluidity of the cell membrane. The balance between synthesis and catabolism of cholesterol should be tightly regulated to ensure normal cellular processes.
View Article and Find Full Text PDF