Publications by authors named "Manon Cox"

Healthy insect cell cultures are critical for any method described in this book, including making productive baculovirus banks, protein or AAV expression, and determining viral titers. This chapter describes cell maintenance in shake flasks using serum-free conditions and the expansion of virus stocks from a single plaque purified virus. Insect cells can be passaged over multiple generations, but as the cells may undergo changes over multiple passages, limiting the use of your cells to a defined number of passages such as 50 passages is recommendable.

View Article and Find Full Text PDF

The insect cell expression system has previously been proposed as the preferred biosecurity strategy for production of any vaccine, particularly for future influenza pandemic vaccines. The development and regulatory risk for new vaccine candidates is shortened as the platform is already in use for the manufacturing of the FDA-licensed seasonal recombinant influenza vaccine Flublok. Large-scale production capacity is in place and could be used to produce other antigens as well.

View Article and Find Full Text PDF

The insect cell-baculovirus expression system technology (BEST) has a prominent role in producing recombinant proteins to be used as research and diagnostic reagents and vaccines. The glycosylation profile of proteins produced by the BEST is composed predominantly of terminal mannose glycans, and, in Trichoplusia ni cell lines, core α3 fucosylation, a profile different to that in mammals. Insects contain all the enzymatic activities needed for complex N- and O-glycosylation and sialylation, although few reports of complex glycosylation and sialylation by the BEST exist.

View Article and Find Full Text PDF

Objectives: The recombinant influenza vaccine is well established in adults ≥18 years of age for preventing seasonal influenza disease. In this randomized controlled trial, we compared the safety and immunogenicity of the quadrivalent, recombinant influenza vaccine (RIV4) versus the inactivated influenza vaccine in children and adolescents 6 to 17 years of age.

Methods: Two age cohorts were enrolled sequentially: 159 subjects aged 9 to 17 years and, after reviewing for safety, 60 children aged 6 to 8 years.

View Article and Find Full Text PDF

Human influenza virus infections with avian subtype H7N9 viruses are a major public health concern and have encouraged the development of effective H7 prepandemic vaccines. In this study, baseline and postvaccination serum samples of individuals aged 18 years and older who received a recombinant H7 hemagglutinin vaccine with and without an oil-in-water emulsion (SE) adjuvant were analyzed using a panel of serological assays. While only a small proportion of individuals seroconverted to H7N9 as measured by the conventional hemagglutination inhibition assay, our data show strong induction of anti-H7 hemagglutinin antibodies as measured by an enzyme-linked immunosorbent assay (ELISA).

View Article and Find Full Text PDF

Background: Seasonal influenza vaccines are transitioning to quadrivalent formulations including the hemagglutinins of influenza A subtypes H1N1 and H3N2 and B lineages Yamagata and Victoria.

Methods: A new quadrivalent recombinant influenza vaccine (RIV4) was compared directly with a standard-dose, egg-grown, quadrivalent-inactivated influenza vaccine (IIV4) for immunogenicity and safety in adults 18-49 years of age. The coprimary endpoints for noninferiority were hemagglutination inhibition seroconversion rates and postvaccination geometric mean titer ratios for each antigen using US regulatory criteria.

View Article and Find Full Text PDF

Background: Improved influenza vaccines are needed to control seasonal epidemics. This trial compared the protective efficacy in older adults of a quadrivalent, recombinant influenza vaccine (RIV4) with a standard-dose, egg-grown, quadrivalent, inactivated influenza vaccine (IIV4) during the A/H3N2-predominant 2014-2015 influenza season, when antigenic mismatch between circulating and vaccine influenza strains resulted in the reduced effectiveness of many licensed vaccines.

Methods: We conducted a randomized, double-blind, multicenter trial of RIV4 (45 μg of recombinant hemagglutinin [HA] per strain, 180 μg of protein per dose) versus standard-dose IIV4 (15 μg of HA per strain, 60 μg of protein per dose) to compare the relative vaccine efficacy against reverse-transcriptase polymerase-chain-reaction (RT-PCR)-confirmed, protocol-defined, influenza-like illness caused by any influenza strain starting 14 days or more after vaccination in adults who were 50 years of age or older.

View Article and Find Full Text PDF

A putative novel rhabdovirus (SfRV) was previously identified in a Spodoptera frugiperda cell line (Sf9 cells [ATCC CRL-1711 lot 58078522]) by next generation sequencing and extensive bioinformatic analysis. We performed an extensive analysis of our Sf9 cell bank (ATCC CRL-1711 lot 5814 [Sf9L5814]) to determine whether this virus was already present in cells obtained from ATCC in 1987. Inverse PCR of DNA isolated from Sf9 L5814 cellular DNA revealed integration of SfRV sequences in the cellular genome.

View Article and Find Full Text PDF

Antibody responses to influenza virus hemagglutinin provide protection against infection and are well studied. Less is known about the human antibody responses to the second surface glycoprotein, neuraminidase. Here, we assessed human antibody reactivity to a panel of N1, N2, and influenza B virus neuraminidases in different age groups, including children, adults, and the elderly.

View Article and Find Full Text PDF

Timely vaccine supply is critical during influenza pandemics but is impeded by current virus-based manufacturing methods. The 2009 H1N1/2009pdm 'swine flu' pandemic reinforced the need for innovation in pandemic vaccine design. We report on insights gained during rapid development of a pandemic vaccine based on recombinant haemagglutinin (rHA) formulated with Advax™ delta inulin adjuvant (Panblok-H1/Advax).

View Article and Find Full Text PDF

Given periodic outbreaks of fatal human infections caused by coronaviruses, development of an optimal coronavirus vaccine platform capable of rapid production is an ongoing priority. This chapter describes the use of an insect cell expression system for rapid production of a recombinant vaccine against severe acute respiratory syndrome coronavirus (SARS). Detailed methods are presented for expression, purification, and release testing of SARS recombinant spike protein antigen, followed by adjuvant formulation and animal testing.

View Article and Find Full Text PDF

Unlabelled: Influenza remains a major global health burden. Seasonal vaccines offer protection but can be rendered less effective when the virus undergoes extensive antigenic drift. Antibodies that target the highly conserved hemagglutinin stalk can protect against drifted viruses, and vaccine constructs designed to induce such antibodies form the basis for a universal influenza virus vaccine approach.

View Article and Find Full Text PDF

Background: The safety and tolerability of Flublok(®), a purified recombinant hemagglutinin seasonal influenza vaccine, was compared to AFLURIA(®) in a randomized, blinded clinical trial in adults ≥ 50 years of age with attention to hypersensitivity reactions.

Methods: This blinded, randomized trial of healthy adults ≥ 50 years of age compared safety of Flublok vs. AFLURIA with respect to pre-specified possible hypersensitivity: "rash," "urticaria," "swelling" and "non-dependent edema;" solicited reactogenicity and unsolicited adverse events.

View Article and Find Full Text PDF

Flublok is the first recombinant hemagglutinin (HA) vaccine licensed by the US Food and Drugs Administration for the prevention of influenza in adults aged 18 and older. The HA proteins produced in insect cell culture using the baculovirus expression system technology are exact analogues of wild type circulating influenza virus HAs. The universal HA manufacturing process that has been successfully scaled to the 21,000L contributes to rapid delivery of a substantial number of doses.

View Article and Find Full Text PDF

This study was designed to improve the stability of liquid formulations of recombinant influenza hemagglutinin (rHA) and to understand the mechanism of early loss of potency for rHA. The potency of rHA derived from several influenza strains was determined using single radial immunodiffusion (SRID), and the structure of the rHA was characterized using SDS-PAGE and dynamic light scattering. rHA formed disulfide cross-linked multimers, and potency decreased during extended storage.

View Article and Find Full Text PDF

Dissolved carbon dioxide (dCO2 ) accumulation during cell culture has been recognized as an important parameter that needs to be controlled for successful scale-up of animal cell culture because above a certain concentration there are adverse effects on cell growth performance and protein production. We investigated the effect of accumulation of dCO2 in bioreactor cultures of expresSF+(®) insect cells infected with recombinant baculoviruses expressing recombinant influenza virus hemagglutinins (rHA). Different strategies for bioreactor cultures were used to obtain various ranges of concentrations of dCO2 (<50, 50-100, 100-200, and >200 mmHg) and to determine their effects on recombinant protein production and cell metabolic activity.

View Article and Find Full Text PDF

Background: Recombinant hemagglutinin (rHA) is the active component in Flublok®; a trivalent influenza vaccine produced using the baculovirus expression vector system (BEVS). HA is a membrane bound homotrimer in the influenza virus envelope, and the purified rHA protein assembles into higher order rosette structures in the final formulation of the vaccine. During purification and storage of the rHA, disulfide mediated cross-linking of the trimers within the rosette occurs and results in reduced potency.

View Article and Find Full Text PDF

Titer on Chip (Flu-ToC) is a new technique for quantification of influenza hemagglutinin (HA) concentration. In order to evaluate the potential of this new technique, a comparison of Flu-ToC to more conventional methods was conducted using recombinant HA produced in a baculovirus expression system as a test case. Samples from current vaccine strains were collected from four different steps in the manufacturing process.

View Article and Find Full Text PDF

Multiple different hemagglutinin (HA) protein antigens have been reproducibly manufactured at the 650L scale by Protein Sciences Corporation (PSC) based on an insect cell culture with baculovirus infection. Significantly, these HA protein antigens were produced by the same Universal Manufacturing process as described in the biological license application (BLA) for the first recombinant influenza vaccine approved by the FDA (Flublok). The technology is uniquely designed so that a change in vaccine composition can be readily accommodated from one HA protein antigen to another one.

View Article and Find Full Text PDF