Background Handcrafted radiomics and deep learning (DL) models individually achieve good performance in lesion classification (benign vs malignant) on contrast-enhanced mammography (CEM) images. Purpose To develop a comprehensive machine learning tool able to fully automatically identify, segment, and classify breast lesions on the basis of CEM images in recall patients. Materials and Methods CEM images and clinical data were retrospectively collected between 2013 and 2018 for 1601 recall patients at Maastricht UMC+ and 283 patients at Gustave Roussy Institute for external validation.
View Article and Find Full Text PDFTreatment of patients with oesophageal and gastric cancer (OeGC) is guided by disease stage, patient performance status and preferences. Lymph node (LN) status is one of the strongest prognostic factors for OeGC patients. However, survival varies between patients with the same disease stage and LN status.
View Article and Find Full Text PDFIntroduction: There is a cumulative risk of 20-40% of developing brain metastases (BM) in solid cancers. Stereotactic radiotherapy (SRT) enables the application of high focal doses of radiation to a volume and is often used for BM treatment. However, SRT can cause adverse radiation effects (ARE), such as radiation necrosis, which sometimes cause irreversible damage to the brain.
View Article and Find Full Text PDFDetection and segmentation of abnormalities on medical images is highly important for patient management including diagnosis, radiotherapy, response evaluation, as well as for quantitative image research. We present a fully automated pipeline for the detection and volumetric segmentation of non-small cell lung cancer (NSCLC) developed and validated on 1328 thoracic CT scans from 8 institutions. Along with quantitative performance detailed by image slice thickness, tumor size, image interpretation difficulty, and tumor location, we report an in-silico prospective clinical trial, where we show that the proposed method is faster and more reproducible compared to the experts.
View Article and Find Full Text PDFBackground: Barrett's esophagus (BE) is a precursor lesion of esophageal adenocarcinoma and may progress from non-dysplastic through low-grade dysplasia (LGD) to high-grade dysplasia (HGD) and cancer. Grading BE is of crucial prognostic value and is currently based on the subjective evaluation of biopsies. This study aims to investigate the potential of machine learning (ML) using spatially resolved molecular data from mass spectrometry imaging (MSI) and histological data from microscopic hematoxylin and eosin (H&E)-stained imaging for computer-aided diagnosis and prognosis of BE.
View Article and Find Full Text PDFHistorically, medical imaging has been a qualitative or semi-quantitative modality. It is difficult to quantify what can be seen in an image, and to turn it into valuable predictive outcomes. As a result of advances in both computational hardware and machine learning algorithms, computers are making great strides in obtaining quantitative information from imaging and correlating it with outcomes.
View Article and Find Full Text PDF