Publications by authors named "Manon Bellardie"

Social behavior is important for our well-being, and its dysfunctions impact several pathological conditions. Although the involvement of glutamate is undeniable, the relevance of vesicular glutamate transporter type 3 (VGluT3), a specific vesicular transporter, in the control of social behavior is not sufficiently explored. Since midbrain median raphe region (MRR) is implicated in social behavior and the nucleus contains high amount of VGluT3+ neurons, we compared the behavior of male VGluT3 knock-out (KO) and VGluT3-Cre mice, the latter after chemogenetic MRR-VGluT3 manipulation.

View Article and Find Full Text PDF

The psychoendocrine evaluation of lamb development has demonstrated that maternal deprivation and milk replacement alters health, behavior, and endocrine profiles. While lambs are able to discriminate familiar and non-familiar conspecifics (mother or lamb), only lambs reared with their mother develop such clear social discrimination or preference. Lambs reared without mother display no preference for a specific lamb from its own group.

View Article and Find Full Text PDF

Aims: Median raphe region (MRR) is an important bottom-up regulatory center for various behaviors as well as vegetative functions, but detailed descriptions and links between the two are still largely unexplored.

Methods: Pharmacogenetics was used to study the role of MRR in social (sociability, social interaction, resident intruder test) and emotional behavior (forced swim test) parallel with some vegetative changes (biotelemetry: core body temperature). Additionally, to validate pharmacogenetics, the effect of clozapine-N-oxide (CNO), the ligand of the artificial receptor, was studied by measuring (i) serum and brainstem concentrations of CNO and clozapine; (ii) MRR stimulation induced neurotransmitter release in hippocampus; (iii) CNO induced changes in body temperature and locomotor activity.

View Article and Find Full Text PDF

Posttraumatic stress disorder (PTSD) is triggered by traumatic events in 10-20% of exposed subjects. N-linked glycosylation, by modifying protein functions, may provide an important environmental link predicting vulnerability. Our goals were (1) to find alterations in plasma N-glycome predicting stress-vulnerability; (2) to investigate how trauma affects N-glycome in the plasma (PGP) and in three PTSD-related brain regions (prefrontal cortex, hippocampus and amygdala; BGP), hence, uncover specific targets for PTSD treatment.

View Article and Find Full Text PDF