Publications by authors named "Manoj Samant"

Blockade of the cluster of differentiation 40 (CD40)-CD40L interaction has potential for treating autoimmune diseases and preventing graft rejection. This first-in-human, randomized, double-blind, placebo-controlled study (NCT04497662) evaluated safety, pharmacokinetics, receptor occupancy, and pharmacodynamics of the humanized anti-CD40 monoclonal antibody KPL-404. Healthy volunteers were randomized to one of two single-ascending-dose groups: single intravenous KPL-404 dose 0.

View Article and Find Full Text PDF

Objectives: Granulocyte-macrophage colony-stimulating factor (GM-CSF) is implicated in pathogenesis of giant cell arteritis. We evaluated the efficacy of the GM-CSF receptor antagonist mavrilimumab in maintaining disease remission.

Methods: This phase 2, double-blind, placebo-controlled trial enrolled patients with biopsy-confirmed or imaging-confirmed giant cell arteritis in 50 centres (North America, Europe, Australia).

View Article and Find Full Text PDF

CRF mediates numerous stress-related endocrine, autonomic, metabolic, and behavioral responses. We present the synthesis and chemical and biological properties of astressin B analogues {cyclo(30-33)[D-Phe(12),Nle(21,38),C(α)MeLeu(27,40),Glu(30),Lys(33)]-acetyl-h/r-CRF(9-41)}. Out of 37 novel peptides, 17 (2, 4, 6-8, 10, 11, 16, 17, 27, 29, 30, 32-36) and 16 (3, 5, 9, 12-15, 18, 19, 22-26, 28, 31) had k(i) to CRF receptors in the high picomolar and low nanomole ranges, respectively.

View Article and Find Full Text PDF

The design, synthesis and pharmacology of novel long-acting exenatide analogs for the treatment of metabolic diseases are described. These molecules display enhanced pharmacokinetic profile and potent glucoregulatory and weight lowering actions compared to native exenatide. [Leu(14)]exenatide-ABD is an 88 residue peptide amide incorporating an Albumin Binding Domain (ABD) scaffold.

View Article and Find Full Text PDF

The synthesis, biological testing, and NMR studies of several analogues of H-c[Cys (3)-Phe (6)-Phe (7)-DTrp (8)-Lys (9)-Thr (10)-Phe (11)-Cys (14)]-OH (ODT-8, a pan-somatostatin analogue, 1) have been performed to assess the effect of changing the stereochemistry and the number of atoms in the disulfide bridge on binding affinity. Cysteine at positions 3 and/or 14 (somatostatin numbering) were/was substituted with d-cysteine, norcysteine, D-norcysteine, homocysteine, and/or D-homocysteine. The 3D structure analysis of selected partially selective, bioactive analogues (3, 18, 19, and 21) was carried out in dimethylsulfoxide.

View Article and Find Full Text PDF

H-DPhe (2)-c[Cys (3)-Phe (7)-DTrp (8)-Lys (9)-Thr (10)-Cys (14)]-Thr (15)-NH2 (1) (a somatostatin agonist, SRIF numbering) and H-Cpa (2)-c[DCys (3)-Tyr (7)-DTrp (8)-Lys (9)-Thr (10)-Cys (14)]-Nal (15)-NH2 (4) (a somatostatin antagonist) are based on the structure of octreotide that binds to three somatostatin receptor subtypes (sst 2/3/5) with significant binding affinity. Analogues of 1 and 4 were synthesized with norcysteine (Ncy), homocysteine (Hcy), or D-homocysteine (DHcy) at positions 3 and/or 14. Introducing Ncy at positions 3 and 14 constrained the backbone flexibility, resulting in loss of binding affinity at all sst s.

View Article and Find Full Text PDF

We report the synthesis of racemic Alloc-Ncy(Tmob)-OH, the resolution of its methyl ester, and demonstrate its application to form a norcystine bridge in octreotide-amide using the Fmoc-strategy on solid phase. N-Alloc and S-Tmob protections of norcysteine (Ncy) were found to be a preferred choice for Fmoc-strategy over three other protected norcysteines synthesized i.e.

View Article and Find Full Text PDF

A series of acyline analogues incorporating l- and d-isomers of S-arylated/alkylated norcysteines [Ncy(R), where R is 2-naphthyl, methyl, and isopropyl] at positions 1, 4, 7, and 10 were synthesized. Some of these analogues were mono- and dioxidized to sulfoxides and sulfones. All of the analogues of acyline were screened for the antagonism of the GnRH-induced response in a reporter gene assay in HEK-293 cells expressing the human GnRH receptor.

View Article and Find Full Text PDF

Novel degarelix (Fe200486) analogues were screened for antagonism of GnRH-induced response (IC(50)) in a reporter gene assay. Inhibition of luteinizing hormone release over time was measured in the castrated male rat. N(omega)-Hydroxy- and N(omega)-methoxy-carbamoylation of Dab and Dap at position 3 (3-6), and N(omega)-hydroxy-,N(omega)-methoxy-carbamoylation and pegylation of 4Aph at positions 5 and 6 (7-10, 15-17, 22-25) were carried out.

View Article and Find Full Text PDF

[reaction: see text] Norcysteine (Ncy) is an unnatural amino acid possessing an electronegative sulfur atom directly attached to the alpha-carbon atom. We describe the synthesis of Boc-D,L-Ncy(Mob)-OH, the resolution of its methyl ester, and the introduction of both D- and L-Ncy in GnRH analogues.

View Article and Find Full Text PDF

Degarelix (FE200486, Ac-d-2Nal(1)-d-4Cpa(2)-d-3Pal(3)-Ser(4)-4Aph(l-Hor)(5)-d-4Aph(Cbm)(6)-Leu(7)-ILys(8)-Pro(9)-d-Ala(10)-NH(2)) is a potent and very long acting antagonist of gonadotropin-releasing hormone (GnRH) after subcutaneous administration in mammals including humans. Analogues of degarelix were synthesized, characterized, and screened for the antagonism of GnRH-induced response in a reporter gene assay in HEK-293 cells expressing the human GnRH receptor. The duration of action was also determined in the castrated male rat assay to measure the extent (efficacy and duration of action) of inhibition of luteinizing hormone (LH) release.

View Article and Find Full Text PDF

Several azaline B analogs (2-10) were synthesized and evaluated for their ability to antagonize GnRH in vitro and for duration of action in inhibiting luteinizing hormone secretion in a castrated male rat assay in vivo. Analogs, 8 (IC(50) = 1.85 nM), and 9 (IC(50) = 1.

View Article and Find Full Text PDF

Gonadotropin-releasing hormone (GnRH) antagonists with high potency and improved duration of action are needed for potential clinical applications. We synthesized four new antagonists (2-5) of GnRH homologues to Azaline B (1), with a common core sequence of [Aph(X)5, D-Aph(Cbm)6]Azaline B. In these analogs, (X) contains hydrophobic aromatic moieties (like homoveratoyl in 2, homovanillyl in 3, 2,5-dimethoxyphenylacetyl in 4, and 3,5-dimethoxyphenylacetyl in 5) designed to improve the duration of action over that of Azaline B.

View Article and Find Full Text PDF