Publications by authors named "Manoj Kalubovilage"

Free-running mode-locked monolithic optical frequency combs offer a compact and simple alternative to complicated optical frequency division schemes. Ultra-low free-running noise performance of these oscillators removes the necessity of external phase stabilization, making the microwave systems uncomplicated and compact with lower power consumption while liberating the sidebands of the carrier from servo bumps typically present around hundreds of kilohertz offsets. Here we present a free-running monolithic laser-based 8 GHz photonic microwaves generation and characterization with a cryogenically cooled power splitter to demonstrate a state-of-the-art phase noise floor of less than -180 dBc/Hz below 1 MHz offset from the carrier.

View Article and Find Full Text PDF

Phase noise performance of photonic microwave systems, such as optical frequency division (OFD), can surpass state-of-the-art electronic oscillators by several orders of magnitude. However, high-finesse cavities and active stabilization requirements in OFD systems make them complicated and potentially unfit for field deployment. Ultra-low noise mode-locked monolithic lasers offer a viable alternative for a compact and simple photonic microwave system.

View Article and Find Full Text PDF