Even though metal-catalyzed enantioselective hydroborations of alkenes have attracted enormous attention, few preparatively useful reactions of α-alkyl acrylic acid derivatives are known, and most use rhodium catalysts. No examples of asymmetric hydroboration of the corresponding α-arylacrylic acid esters are known. In our continuing efforts to search for new applications of earth-abundant cobalt catalysts for broadly applicable organic transformations, we have identified 2-(2-diarylphosphinophenyl)oxazoline ligands and mild reaction conditions for efficient and highly regio- and enantioselective hydroboration of α-alkyl- and α-aryl- acrylates, giving β-borylated propionates.
View Article and Find Full Text PDFThis work reports a facile annulation of anthranils with aryloxyethynes or aryl propargyl ethers to construct useful benzofuro[2,3-b]quinoline and 6H-chromeno[3,4-b]quinoline frameworks, respectively; these heterocycles are not readily available from literature methods despite their biological significance. This high atom- and step-economy strategy is highlighted by a broad substrate scope. The reaction mechanism is proposed to proceed through sequential cyclizations among the oxyaryl group, gold carbene and benzaldehyde of the α-imino gold carbene intermediates.
View Article and Find Full Text PDFThe catalytic formation of gold enolates from alkynes, nitrones, and nucleophiles is described, and their Mannich reactions result in nucleophile-directed chemoselectivity through cooperative catalysis. For 1-alkyn-4-ols and 2-ethynylphenols, their gold-catalyzed nitrone oxidations afforded N-containing dihydrofuran-3(2H)-ones with syn selectivity. The mechanism involves the Mannich reactions of gold enolates with imines through an O-H-N hydrogen-bonding motif.
View Article and Find Full Text PDFA number of hybrid molecules containing thienopyrimidinones and thiouracil moieties were designed, synthesized and tested against Mycobacterium tuberculosis H37Ra wherein it was observed that the compounds 11-14 exhibited antitubercular activity in vitro (MIC 7.6-19.1 μg/mL, 12-35 μM) against dormant stage while the compound 15 exhibited antitubercular activity in vitro against dormant (MIC 23.
View Article and Find Full Text PDF