Drug delivery vehicles optimize therapeutic outcomes by enhancing drug efficacy, minimizing side effects, and providing controlled release. Injectable hydrogels supersede conventional ones in the field of drug delivery owing to their less invasive administration and improved targeting. However, they face challenges such as low biodegradability and biocompatibility, potentially compromising their effectiveness.
View Article and Find Full Text PDFThe direct transformation of methane into C oxygenates such as acetic acid selectively using molecular oxygen (O) is a significant challenge due to the chemical inertness of methane, the difficulty of methane C-H bond activation/C-C bond coupling and the thermodynamically favored over-oxidation. In this study, we have successfully developed a porous aluminium metal-organic framework (MOF)-supported single-site mono-copper(ii) hydroxyl catalyst [MIL-53(Al)-Cu(OH)], which is efficient in directly oxidizing methane to acetic acid in water at 175 °C with a remarkable selectivity using only O. This heterogeneous catalyst achieved an exceptional acetic acid productivity of 11 796 mmol mol h in 9.
View Article and Find Full Text PDFThe emerging field of orbitronics aims to generate and control orbital angular momentum for information processing. Chiral crystals are promising orbitronic materials because they have been predicted to host monopole-like orbital textures, where the orbital angular momentum aligns isotropically with the electron's crystal momentum. However, such monopoles have not yet been directly observed in chiral crystals.
View Article and Find Full Text PDFColossal magnetoresistance (CMR) is an exotic phenomenon that allows for the efficient magnetic control of electrical resistivity and has attracted significant attention in condensed matter due to its potential for memory and spintronic applications. Heusler alloys are the subject of considerable interest in this context due to the electronic properties that result from the nontrivial band topology. Here, the observation of CMR near room temperature is reported in the shape memory Heusler alloy NiMnIn, which is attributed to the combined effects of magnetic field-induced martensite twin variant reorientation (MFIR) and magnetic field-induced structural phase transformation (MFIPT).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
We report the development of an earth-abundant metal catalyst for methane C-H borylation. The post-synthetic metalation of bipyridine-functionalized zirconium metal-organic framework (MOF) with NiBr, followed by treatment with NaEtBH affords MOF-supported monomeric bipyridyl-nickel(II) dihydride species via active site isolation. The heterogeneous and recyclable nickel catalyst selectively borylates methane at 200 °C using pinacolborane (HBpin) to afford CHBpin in 61 % yield with a turnover number (TON) up to 1388.
View Article and Find Full Text PDFThe exploration of 'electrostatic self-assembly' on solid surfaces has garnered significant interest across various fields. With the sophistication of gadgets, managing electromagnetic interference (EMI) from stray signals, especially in stealth applications, necessitates materials that can absorb microwaves. A promising approach involves integrating lightweight self-healing polymeric materials.
View Article and Find Full Text PDFFive compounds, [Zn(bpe)(BPTA)(HO)] ⋅ 2HO (1); [Zn(bpe)(BPTA)] (2); [Cd(bpe)(BPTA)HO] (3); [Cd(BPTA) (bpmh)] ⋅ 2HO (4); and Cu(BPTA)(bpmh)(HO)] ⋅ 2HO (5) were prepared employing 2,5-bis(prop-2-yn-1-yloxy)terephthalic acid (2, 5 BPTA) as the primary ligand and 1,2-di(pyridin-4-yl)ethane (4, 4' bpe) (1-3) and 1,2-bis(pyridin-3-ylmethylene)hydrazine (bpmh) (4-5) as the secondary ligands. Single crystal studies indicated that the compounds 1, 3 and 5 have two-dimensional layer structures and compounds 2 and 4 three-dimensional structures. The luminescence behaviour of the compounds 2 and 3 were explored for the sensing of metronidazole in aqueous medium.
View Article and Find Full Text PDFCurcumin, a compound in turmeric, shows promise for its anti-cancer properties. In this study, we successfully synthesised curcumin-reduced and capped gold nanoparticles. Most evaluations have been limited to in-vitro studies for these nanoparticles; our study takes a step further by highlighting the in-vivo assessment of these curcumin-reduced and capped gold nanoparticles (GNPCs) using non-invasive imaging (SPECT and optical) and possible therapeutic potential.
View Article and Find Full Text PDFDirect hydroxylation of benzene to phenol is more appealing in the industry for the economic and environmentally friendly phenol synthesis than the conventional cumene process. We have developed a UiO-metal-organic framework (MOF)-supported mono bipyridyl-Iron(II) hydroxyl catalyst [bpy-UiO-Fe(OH)] for the selective benzene hydroxylation into phenol using HO as the oxidant. The heterogeneous bpy-UiO-Fe(OH) catalyst showed high activity and remarkable phenol selectivity of 99%, giving the phenol mass-specific activity up to 1261 mmolg h at 60 °C.
View Article and Find Full Text PDFChemoselective monoborylation of methane in high yield is a grand challenge. We have developed a metal-organic framework confined pyridylimine-iridium hydride catalyst, which is efficient in methane C-H borylation using bis(pinacolato)diboron to afford methyl boronic acid pinacol ester in 98% GC-yield at 130 °C with a TON of 196. Mechanistic investigation suggests the oxidative addition of methane to Ir(Bpin)(H) species to form Ir(Bpin)(CH)(H) as the turnover limiting step.
View Article and Find Full Text PDFSpin-orbit coupling in noncentrosymmetric crystals leads to spin-momentum locking - a directional relationship between an electron's spin angular momentum and its linear momentum. Isotropic orthogonal Rashba spin-momentum locking has been studied for decades, while its counterpart, isotropic parallel Weyl spin-momentum locking has remained elusive in experiments. Theory predicts that Weyl spin-momentum locking can only be realized in structurally chiral cubic crystals in the vicinity of Kramers-Weyl or multifold fermions.
View Article and Find Full Text PDFThe design of new complex mixed metal tellurides (containing low toxicity cations) with intrinsic ultralow thermal conductivity is of paramount importance in the field of thermoelectrics. Herein, we report the synthesis and characterization of polycrystalline and single crystals of a new mixed-metal quaternary telluride MnInSiTe. The structural aspects and chemical formula of this phase at room temperature have been established using single crystal X-ray diffraction and EDX studies.
View Article and Find Full Text PDFCarbon fiber-reinforced epoxy (CFRE) laminates have attracted significant attention as a structural material specifically in the aerospace industry. In recent times, various strategies have been developed to modify the carbon fiber (CF) surface as the interface between the epoxy matrix and CFs plays a pivotal role in determining the overall performance of CFRE laminates. In the present work, graphene oxide (GO) was used to tag a polyetherimide (PEI, termed BA) containing exchangeable bonds and was employed as a sizing agent to improve the interfacial adhesion between CFs and epoxy.
View Article and Find Full Text PDFBackground: Chronic inflammation brought on by oxidative stress can result in several immunopathologies. Natural compounds with antioxidant characteristics, like quercetin, have shown effectiveness in reducing oxidative damage and regulating the immune response.
Purpose: The commonly used food additive monosodium glutamate (M) causes immunosuppression by disrupting redox equilibrium and inducing oxidative stress.
The ever-increasing landscape of heterogeneous catalysis, pure and applied, utilizes many different catalysts. Academic insights along with many industrial adaptations paved the way for the growth. In designing a catalyst, it is desirable to have knowledge of what structure needs to be targeted to help in achieving the goal.
View Article and Find Full Text PDFThe photoswitchable MOlecular Solar Thermal (MOST) energy storage systems that are capable of exhibiting high energy storage densities are found to suffer from the poor cyclability, the use of less abundant UV light of the solar spectrum, or reduced charging/discharging rates and poor photoconversions in solid states. Herein, we have designed and readily synthesized a novel set of para-thioalkyl substituted arylazoisoxazoles, that undergo high trans-cis and cis-trans photoconversions under visible light, and show fast charging/discharging and impressive cyclability. Remarkably, the presence of C6-or C10-thioalkyl chainin photochromes permitted reversible solid-liquid phase transition with the formation of cis-enriched charged states by 400 nm light irradiation and trans-enriched discharged states by 530 nm light at various temperatures (10-35 °C).
View Article and Find Full Text PDFUpcycling nonbiodegradable plastics such as polyolefins is paramount due to their ever-increasing demand and landfills after usage. Catalytic hydrogenolysis is highly appealing to convert polyolefins into targeted value-added products under mild reaction conditions compared with other methods, such as high-temperature incineration and pyrolysis. We have developed three isoreticular zirconium UiO-metal-organic frameworks (UiO-MOFs) node-supported ruthenium dihydrides (UiO-RuH), which are efficient heterogeneous catalysts for hydrogenolysis of polyethylene at 200 °C, affording liquid hydrocarbons with a narrow distribution and excellent selectivity via shape-selective catalysis.
View Article and Find Full Text PDFThe lanthanide metal organic framework compounds [Ln(BPTA)(Bpy)]·0.5DMF (Ln = Y, Eu, Gd, Tb, Dy; 1a-5a) and [Ln(BPTA)(Phen)]·0.5DMF (Ln = Y, Eu, Gd, Tb, Dy; 1b-5b) were prepared by employing 2,5-bis(prop-2-yn-1-yloxy)terephthalic acid (2,5-BPTA) as the primary ligand and 2,2'-bipyridine (1a-5a) and 1,10-phenanthroline (1b-5b) as the secondary ligands.
View Article and Find Full Text PDFExternal hemostatic agents play a crucial role in stabilizing an impaired process during pathological conditions. The idea is to stabilize thesystem as soon as possible. This study uses a class I hemostatic drug tranexamic acid as a reducing and capping agent for synthesizing the gold nanoparticles (Tr-AuNPs).
View Article and Find Full Text PDFAccording to current projections, of the 400 mega tons of plastic produced globally, 70% is waste and of that only 16% is recycled and the rest is incinerated. This is estimated to contribute to ca. 16% of the net carbon emission by 2050.
View Article and Find Full Text PDFReducing nitro compounds to amines is a fundamental reaction in producing valuable chemicals in industry. Herein, the synthesis and characterization of a zirconium metal-organic framework-supported salicylaldimine-cobalt(II) chloride (salim-UiO-CoCl) and its application in catalytic reduction of nitro compounds are reported. Salim-UiO-Co displayed excellent catalytic activity in chemoselective reduction of aromatic and aliphatic nitro compounds to the corresponding amines in the presence of phenylsilane as a reducing agent under mild reaction conditions.
View Article and Find Full Text PDFWeyl semimetals exhibit exotic magnetotransport phenomena such as the chiral anomaly and surface-to-bulk quantum oscillations (Weyl orbits) due to chiral bulk states and topologically protected surface states. Here we report a unique transport property in crystals of the ferromagnetic nodal-line Weyl semimetal CoMnGa that have been polished to micron thicknesses using a focused ion beam. These thin crystals exhibit a large planar resistance anisotropy (10 × ) with axes that rotate by 90 degrees between opposite faces of the crystal.
View Article and Find Full Text PDFFerroptosis is a non-conventional cellular death caused by lipid peroxide induced iron deposition. Intracellular lipid accumulation followed by generation of lipid peroxides is an hallmark of non-alcoholic fatty liver disease (NAFLD). Melatonin (MLT) is an important pineal hormone with tremendous antioxidant and anti-inflammatory properties.
View Article and Find Full Text PDFNew copper compounds, [Cu(CHO)(CHN)(HO)] (), [Cu(CHO)(CHN)(HO)]·(CHON) (), [Cu(CHO)(CHN)(HO)]·(CHON) (), [Cu(CHO)(CHN)] (), and [Cu(CHO)(CHN)]·(HO) (), were prepared employing 2,5-bis(prop-2-yn-1-yloxy)terephthalic acid (2,5-BPTA) as the primary ligand and 4,4'-bipyridine (-) and 4,4'-azopyridine (-) as the secondary ligands. Single-crystal studies indicated that compounds - have two-dimensional layer structures and compound has a three-dimensional structure. Compounds - were isolated from the same reaction mixture but by varying the time of reaction.
View Article and Find Full Text PDF