Publications by authors named "Manlio Palumbo"

This paper deals with a critical examination on the possibility of quantitatively predicting the in vivo activity of new chemical entities (NCEs) by making use of in silico and in vitro data including three-dimensional structure of drug-target complex, thermodynamic and crowding parameters, ADME (absorption, distribution, metabolism, excretion) properties, and off-target (toxic) interactions. This formidable challenge is still a dream, given the presently occurring exceedingly high (>95%) attrition rates of NCEs. As a solution we envisage exploiting advanced AI (artificial intelligence) algorithms.

View Article and Find Full Text PDF

G-quadruplexes (G4) are nucleic acid secondary structures frequently assumed by G-rich sequences located mostly at telomeres and proto-oncogenes promoters. Recently, we identified, in canine (v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog) promoter, two G-rich sequences able to fold into G4: d_kit1 and d_kit2_A16. In this study, an anthraquinone (AQ1) and an anthracene derivative (AN6), known to stabilize the G4 structures of the corresponding human h_kit1 and h_kit2, were tested on the canine G4 and in two canine mast cell tumor (MCT) cell lines (C2 and NI-1) to verify their capability to down-regulate expression.

View Article and Find Full Text PDF

G-quadruplexes are nucleic acids structures stabilized by physiological concentration of potassium ions. Because low stability G-quadruplexes are hardly detectable by mass spectrometry, we optimized solvent conditions: isopropanol in a triethylamine/hexafluoroisopropanol mixture highly increased G-quadruplex sensitivity with no modification of the physiological G-quadruplex conformation. G-quadruplexes/G-quadruplex-ligand complexes were also correctly detected at concentration as low as 40 nM.

View Article and Find Full Text PDF

Oncogenic activation of RET kinase has been found in several neoplastic diseases, like medullary thyroid carcinoma, multiple endocrine neoplasia, papillary thyroid carcinoma, and non-small-cell lung cancer. Currently approved RET inhibitors were not originally designed to be RET inhibitors, and their potency against RET kinase has not been optimized. Hence, novel compounds able to inhibit both wild-type RET ( RET) and its mutants (e.

View Article and Find Full Text PDF

The DNA alkylating mechanism of PNU-159682 (PNU), a highly potent metabolite of the anthracycline nemorubicin, was investigated by gel-electrophoretic, HPLC-UV, and micro-HPLC/mass spectrometry (MS) measurements. PNU quickly reacted with double-stranded oligonucleotides, but not with single-stranded sequences, to form covalent adducts which were detectable by denaturing polyacrylamide gel electrophoresis (DPAGE). Ion-pair reverse-phase HPLC-UV analysis on CG rich duplex sequences having a 5'-CCCGGG-3' central core showed the formation of two types of adducts with PNU, which were stable and could be characterized by micro-HPLC/MS.

View Article and Find Full Text PDF

Background: G-rich sequences undergo unique structural equilibria to form G-quadruplexes (G4) both in vitro and in cell systems. Several pathologies emerged to be directly related to G4 occurrence at defined genomic portions. Additionally, G-rich sequences are significantly represented around transcription start sites (TSS) thus leading to the hypothesis of a gene regulatory function for G4.

View Article and Find Full Text PDF

Background: G-quadruplexes (G4s) are four-stranded nucleic acid structures that form in G-rich sequences. Nucleolin (NCL) is a cellular protein reported for its functions upon G4 recognition, such as induction of neurodegenerative diseases, tumor and virus mechanisms activation. We here aimed at defining NCL/G4 binding determinants.

View Article and Find Full Text PDF

1,10-Phenanthroline (Phen) derivatives are attractive ligands to provide metal complexes that are selective for different DNA secondary structures. Herein, we analyze the binding processes of two bis-Phen analogues and their Ni(II) complexes toward double-stranded DNA and telomeric G-quadruplex DNA by calorimetric and spectroscopic techniques. The free ligands can adapt to both DNA arrangements.

View Article and Find Full Text PDF

Stabilization of G-quadruplex (G4) structures in promoters is a novel promising strategy to regulate gene expression at transcriptional and translational levels. c-KIT proto-oncogene encodes for a tyrosine kinase receptor. It is involved in several physiological processes, but it is also dysregulated in many diseases, including cancer.

View Article and Find Full Text PDF

Electrical surgical devices may determine tissue damage through lateral thermal spread and activation of inflammatory processes. Several tissue effects are associated with the use of different surgical instruments. The aim of the present study was to compare tissue damage following the application of cold knife biopsy, bipolar electrocoagulation and the ultracision harmonic scalpel, through the analysis of inflammatory gene mediator expression.

View Article and Find Full Text PDF

Three new ring systems, pyrido[2',3':3,4]pyrrolo[1,2-a]quinoxalines, pyrido[3',2':3,4]pyrrolo[1,2-a]quinoxalines and pyrido[2',3':5,6]pyrazino[2,1-a]isoindoles, were synthesized through an aza-substitution on the already active isoindolo-quinoxaline system and in particular in the position 7 or 4 of the isoindole moiety and in position 5 of the quinoxaline portion. All new compounds were screened by the National Cancer Institute (Bethesda, MD) against a panel of 60 human tumor cell lines. Biological results of the most active derivatives, with pGI50 values between 7.

View Article and Find Full Text PDF

Water-soluble isoindoloquinoxalin (IIQ) imines and the corresponding acetates were conveniently prepared from the key intermediates 2-(2'-aminophenyl)-2H-isoindole-1-carbonitriles obtained by a Strecker reaction between substituted 1,2-dicarbaldehydes and 1,2-phenylenediamines. Both series were screened by the National Cancer Institute (Bethesda, MD) and showed potent antiproliferative activity against a panel of 60 human tumor cell lines. Several of the novel compounds showed GI50 values at a nanomolar level on the majority of the tested cell lines.

View Article and Find Full Text PDF

Naphthalene diimide (NDI) derivatives have shown high affinity for telomeric guanine (G)‑quadruplexes and good antiproliferative activity in different human tumor experimental models. A trisubstituted compound (H‑NDI‑NMe2) has been reported to stabilize the telomeric G‑quadruplex and to cause telomere dysfunction and downregulation of telomerase expression. We further investigated its mechanism of action by analyzing the capability of the molecule to interfere with the expression levels of oncogenes, such as MYC, telome-rase reverse transcriptase (TERT), KIT and BCL2, known to bear G‑quadruplex‑forming sequences within their promoters, in human tumor cell lines of different histological origin.

View Article and Find Full Text PDF

Downregulation of gene expression by induction of non-canonical DNA structures at promotorial level is a novel attractive anticancer strategy. In human, two guanine-rich sequences (h_kit1 and h_kit2) were identified in the promotorial region of oncogene KIT. Their stabilization into G-quadruplex structures can find applications in the treatment of leukemias, mastocytosis, gastrointestinal stromal tumor, and lung carcinomas which are often associated to c-kit mis-regulation.

View Article and Find Full Text PDF

The precise definition of the structural requirements for effective topoisomerase II poisoning by drug molecules is still an elusive issue. In the attempt to better define a pharmacophoric pattern, we prepared several conjugates combining the chemical features of two well-known topoisomerase II poisons, amsacrine and ametantrone. Indeed, an appropriate fusion geometry, which entails the anthracenedione moiety of ametantrone appropriately connected to the methanesulfonamidoaniline side chain of amsacrine, elicits DNA-intercalating properties, the capacity to inhibit the human topoisomerase IIβ isoform, and cytotoxic activity resembling that of the parent compounds.

View Article and Find Full Text PDF

The discovery of novel nucleic acid folding architectures bears a twofold interest related to the structural properties of unprecedented forms and to their functional significance. In addition, physiologically and pathologically important processes can be impaired by endogenous or xenobiotic ligands interacting with specific target sequences. In this paper we will focus on recent advances in the study of telomeric G-quadruplex DNA and RNA structures and the rational design and development of synthetic ligands aimed at pharmacological applications.

View Article and Find Full Text PDF

Telomeres are guanine-rich sequences that protect the ends of chromosomes. These regions can fold into G-quadruplex structures and their stabilization by G-quadruplex ligands has been employed as an anticancer strategy. Genetic analysis in human telomeres revealed extensive allelic variation restricted to loop bases, indicating that the variant telomeric sequences maintain the ability to fold into G-quadruplex.

View Article and Find Full Text PDF

G-quadruplexes are tetraplex structures of nucleic acids that can form in G-rich sequences. Their presence and functional role have been established in telomeres, oncogene promoters and coding regions of the human chromosome. In particular, they have been proposed to be directly involved in gene regulation at the level of transcription.

View Article and Find Full Text PDF

Transition metal complexes allow fine tuning of DNA binding affinity and selectivity. Here we report on the nucleic acid recognition properties of a phenanthroline-based ligand coordinated to Ni(2+) or Cu(2+). The resulting complexes clearly bind to telomeric G-quadruplexes at different sites according to the nature of the bound metal ion.

View Article and Find Full Text PDF

G-Quadruplexes, noncanonical nucleic acid structures, act as silencers in the promoter regions of human genes; putative G-quadruplex forming sequences are also present in promoters of other mammals, yeasts, and prokaryotes. Here we show that also the HIV-1 LTR promoter exploits G-quadruplex-mediated transcriptional regulation with striking similarities to eukaryotic promoters and that treatment with a G-quadruplex ligand inhibits HIV-1 infectivity. Computational analysis on 953 HIV-1 strains substantiated a highly conserved G-rich sequence corresponding to Sp1 and NF-κB binding sites.

View Article and Find Full Text PDF

Background: G-quadruplexes are polymorphic non-canonical nucleic acid conformations involved both in physiological and pathological processes. Given the high degree of folding heterogeneity and comparable conformational stabilities, different G-quadruplex forms can occur simultaneously, hence rendering the use of basic instrumental methods for structure determination, like X-ray diffraction or NMR, hardly useful. Footprinting techniques represent valuable and relatively rapid alternative to characterize DNA folding.

View Article and Find Full Text PDF

Escherichia coli topoisomerase I (EcTopoI) is a type IA bacterial topoisomerase which is receiving large attention due to its potential application as novel target for antibacterial therapeutics. Nevertheless, a detailed knowledge of its mechanism of action at molecular level is to some extent lacking. This is partly due to the requirement of several factors (metal ions, nucleic acid) to the proper progress of the enzyme catalytic cycle.

View Article and Find Full Text PDF

The physiological role(s) played by G-quadruplexes renders these 'non-canonical' DNA secondary structures interesting new targets for therapeutic intervention. In particular, the search for ligands for selective recognition and stabilization of G-quadruplex arrangements has led to a number of novel targeted agents. An interesting approach is represented by the use of metal-complexes, their binding to DNA being modulated by ligand and metal ion nature, and by complex stoichiometry.

View Article and Find Full Text PDF

Non-canonical DNA structures have been postulated to mediate protein-nucleic acid interactions and to function as intermediates in the generation of frame-shift mutations when errors in DNA replication occur, which result in a variety of diseases and cancers. Compounds capable of binding to non-canonical DNA conformations may thus have significant diagnostic and therapeutic potential. Clerocidin is a natural diterpenoid which has been shown to selectively react with single-stranded bases without targeting the double helix.

View Article and Find Full Text PDF