Repeated seizure activity can lead to long-term changes in seizure dynamics and behavior. However, resulting changes in brain-wide dynamics remain poorly understood. This is due partly to technical challenges in precise seizure control and in vivo whole-brain mapping of circuit dynamics.
View Article and Find Full Text PDFPoststroke optogenetic stimulations can promote functional recovery. However, the circuit mechanisms underlying recovery remain unclear. Elucidating key neural circuits involved in recovery will be invaluable for translating neuromodulation strategies after stroke.
View Article and Find Full Text PDFWhole-brain imaging approaches and optogenetic manipulations are powerful tools to map brain-wide neural circuits in vivo. To date, functional magnetic resonance imaging (fMRI) provides the most comprehensive evaluation of such large-scale circuitry. However, functional ultrasound imaging (fUSI) has recently emerged as a complementary imaging modality that can extend such measurements towards the context of diverse behavioral states and tasks.
View Article and Find Full Text PDFTo understand the conditions necessary to initiate and terminate seizures, we investigate optogenetically induced hippocampal seizures with LFP, fMRI, and optogenetic inhibition. During afterdischarge induction using optogenetics, LFP recordings show that stimulations with earlier ictal onset times are more likely to result in afterdischarges and are more difficult to curtail with optogenetic inhibition. These results are generalizable across two initiation sites, the dorsal and ventral hippocampus.
View Article and Find Full Text PDFAnatomical and behavioral data suggest that the ventrolateral orbitofrontal cortex (VLO), which exhibits extensive connectivity and supports diverse sensory and cognitive processes, may exert global influence over brain activity. However, this hypothesis has never been tested directly. We applied optogenetic fMRI to drive various elements of VLO circuitry while visualizing the whole-brain response.
View Article and Find Full Text PDFExtracellular electrophysiology and functional MRI are complementary techniques that provide information about cellular and network-level neural activity, respectively. However, electrodes for electrophysiology are typically made from metals, which cause significant susceptibility artifacts on MR images. Previous work has demonstrated that insulated carbon fiber bundle electrodes reduce the volume of magnetic susceptibility artifacts and can be used to record local field potentials (LFP), but the relatively large diameter of the probes make them unsuitable for multi- and single-unit recordings.
View Article and Find Full Text PDFObjective: A subset of children with febrile status epilepticus (FSE) are at risk for development of temporal lobe epilepsy later in life. We sought a noninvasive predictive marker of those at risk that can be identified soon after FSE, within a clinically realistic timeframe.
Methods: Longitudinal T -weighted magnetic resonance imaging (T WI MRI) of rat pups at several time points after experimental FSE (eFSE) was performed on a high-field scanner followed by long-term continuous electroencephalography.
Currently, approximately 30% of patients with epilepsy do not have adequate seizure control. A greater understanding of the underlying mechanisms by which seizures start or propagate could lead to new therapeutic strategies. The recent development of optogenetics, because of its unprecedented precision for controlling activity within distinct neuronal populations, has revolutionized neuroscience, including epilepsy research.
View Article and Find Full Text PDFA central theory of basal ganglia function is that striatal neurons expressing the D1 and D2 dopamine receptors exert opposing brain-wide influences. However, the causal influence of each population has never been measured at the whole-brain scale. Here, we selectively stimulated D1 or D2 receptor-expressing neurons while visualizing whole-brain activity with fMRI.
View Article and Find Full Text PDFCentral thalamus plays a critical role in forebrain arousal and organized behavior. However, network-level mechanisms that link its activity to brain state remain enigmatic. Here, we combined optogenetics, fMRI, electrophysiology, and video-EEG monitoring to characterize the central thalamus-driven global brain networks responsible for switching brain state.
View Article and Find Full Text PDFPurpose: To propose a novel compressed sensing (CS) high spatial resolution functional MRI (fMRI) method and demonstrate the advantages and limitations of using CS for high spatial resolution fMRI.
Methods: A randomly undersampled variable density spiral trajectory enabling an acceleration factor of 5.3 was designed with a balanced steady state free precession sequence to achieve high spatial resolution data acquisition.
In preclinical studies, implanted electrodes can cause severe degradation of MRI images and hence are seldom used for chronic studies employing functional magnetic resonance imaging. In this study, we developed carbon fiber optrodes (optical fiber and electrode hybrid devices), which can be utilised in chronic longitudinal studies aiming to take advantage of emerging optogenetic technologies, and compared them with the more widely used tungsten optrodes. We find that optrodes constructed using small diameter (~130 μm) carbon fiber electrodes cause significantly reduced artifact on functional MRI images compared to those made with 50 μm diameter tungsten wire and at the same time the carbon electrodes have lower impedance, which leads to higher quality LFP recordings.
View Article and Find Full Text PDFEvidence from animal models and patient data indicates that febrile status epilepticus (FSE) in early development can result in permanently diminished cognitive abilities. To understand the variability in cognitive outcome following FSE, we used MRI to measure dynamic brain metabolic responses to the induction of FSE in juvenile rats. We then compared these measurements to the ability to learn an active avoidance spatial task weeks later.
View Article and Find Full Text PDFAlthough the connectivity of hippocampal circuits has been extensively studied, the way in which these connections give rise to large-scale dynamic network activity remains unknown. Here, we used optogenetic fMRI to visualize the brain network dynamics evoked by different frequencies of stimulation of two distinct neuronal populations within dorsal and intermediate hippocampus. Stimulation of excitatory cells in intermediate hippocampus caused widespread cortical and subcortical recruitment at high frequencies, whereas stimulation in dorsal hippocampus led to activity primarily restricted to hippocampus across all frequencies tested.
View Article and Find Full Text PDFA significant proportion of temporal lobe epilepsy (TLE), a common, intractable brain disorder, arises in children with febrile status epilepticus (FSE). Preventative therapy development is hampered by our inability to identify early the FSE individuals who will develop TLE. In a naturalistic rat model of FSE, we used high-magnetic-field MRI and long-term video EEG to seek clinically relevant noninvasive markers of epileptogenesis and found that reduced amygdala T2 relaxation times in high-magnetic-field MRI hours after FSE predicted experimental TLE.
View Article and Find Full Text PDFFebrile seizures (FS) are the most common type of seizures in infants and preschool children. Inflammatory mediators, which are known triggers of fever, have also been implicated as contributors to the onset of these seizures. Evidence that inflammation is present following FS and during established epilepsy suggests that it could also influence epileptogenesis.
View Article and Find Full Text PDFEarly inflammation following status epilepticus has been implicated in the development of epilepsy and the evolution of brain injury, yet its precise role remains unclear. The development of non-invasive imaging markers of inflammation would enable researchers to test this hypothesis in vivo and study its temporal progression in relation to epileptogenic insults. In this study we have investigated the potential of a targeted magnetic resonance imaging contrast agent--vascular cell adhesion molecule 1 antibody labelled iron oxide--to image the inflammatory process following status epilepticus in the rat lithium-pilocarpine model.
View Article and Find Full Text PDFExtensive worldwide efforts are underway to produce knockout mice for each of the ~25,000 mouse genes, which may give new insights into the underlying pathophysiology of neurological disease. Microscopic magnetic resonance imaging (μMRI) is a key method for non-invasive morphological phenotyping, capable of producing high-resolution 3D images of ex-vivo brains, after fixation with an MR contrast agent. These agents have been suggested to act as active-stains, enhancing structures not normally visible on MRI.
View Article and Find Full Text PDFConvulsive status epilepticus (SE) is a common medical neurological emergency and is associated with hippocampal injury and the subsequent development of epilepsy. However, pathophysiological mechanisms that underlie injury remain unclear, and a clinically useful prognostic biomarker of at-risk patients remains elusive. We hypothesised that non-invasive quantitative multi-parametric MRI characterisation of the early time course in the lithium-pilocarpine rat model would provide insight into pathophysiological processes, and may help to develop a non-invasive prognostic marker of hippocampal injury.
View Article and Find Full Text PDFArterial spin labelling (ASL) can noninvasively isolate the MR signal from arterial blood water that has flowed into the brain. In gray matter, the labelled bolus is dispersed within three main compartments during image acquisition: the intravascular compartment; intracellular tissue space; and the extracellular tissue space. Changes in the relative volumes of the extracellular and intracellular tissue space are thought to occur in many pathologic conditions such as stroke and brain tumors.
View Article and Find Full Text PDFConvulsive status epilepticus is associated with subsequent hippocampal damage and development of mesial temporal sclerosis in a subset of individuals. The lithium pilocarpine model of status epilepticus (SE) in the rat provides a model in which to investigate the molecular and pathogenic process leading to hippocampal damage. In this study, a 2-DE-based approach was used to detect proteome changes in the hippocampus, at an early stage (2 days) after SE, when increased T2 values were detectable by magnetic resonance imaging.
View Article and Find Full Text PDFVascular growth and redistribution of flow can compensate for arterial occlusion and possibly reduce the effects of hypoperfusion. As yet there is limited information on the age-dependent nature of vasculature remodelling. In this study, we have monitored the vascular and morphologic changes using magnetic resonance imaging and histology in a chronic bilateral common carotid artery occlusion (BCCAO) model in both newborn and adult rats.
View Article and Find Full Text PDF