Purpose: To assess the effects of Aleglitazar on hyperglycaemia-induced apoptosis.
Methods: We incubated human cardiomyocytes, cardiomyocytes from cardiac-specific peroxisome proliferator-activated receptor-γ knockout or wild-type mice in normoglycaemic or hyperglycaemic conditions (glucose 25 mM). Cells were treated with different concentrations of Aleglitazar for 48 h.
Purpose: To evaluate whether aleglitazar (Ale), a dual PPARα/γ agonist, has additive effects on myocardial protection against ischemia-reperfusion injury.
Methods: Human cardiomyocytes (HCMs), cardiomyocytes from cardiac-specific PPARγ knockout (MCM-PPARγ (CKO) ) or wild type (MCM-WT) mice were incubated with different concentrations of Ale, and subjected to simulated ischemia-reperfusion (SIR) or normoxic conditions (NSIR). Cell viability, apoptosis and caspase-3 activity were determined.
Arterioscler Thromb Vasc Biol
August 2015
Objective: In addition to P2Y12 receptor antagonism, ticagrelor inhibits adenosine cell uptake. Prior data show that 7-day pretreatment with ticagrelor limits infarct size. We explored the acute effects of ticagrelor and clopidogrel on infarct size and potential long-term effects on heart function.
View Article and Find Full Text PDFPurpose: Statins increase the incidence of new onset diabetes. Prolonged statin therapy upregulates PTEN expression. PTEN levels are also elevated in diabetic animals.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
September 2014
Objective: In a phase III clinical trial (PLATelet inhibition and patient Outcomes, PLATO), ticagrelor provided better clinical outcomes than clopidogrel in patients with acute coronary syndromes. In addition to P2Y12-receptor antagonism, ticagrelor prevents cell uptake of adenosine and has proven able to augment adenosine effects. Adenosine protects the heart against ischemia-reperfusion injury.
View Article and Find Full Text PDFBoth HIF1α (hypoxia-inducible factor alpha) and VEGF (vascular endothelial growth factor) are implicated in the pathogenesis of diabetic retinopathy (DR). Competitive endogenous RNAs (ceRNAs) are messenger RNA (mRNA) molecules that affect each other expression through competition for their shared microRNAs (miRNA). However, little is known about the role of ceRNAs in DR.
View Article and Find Full Text PDFCompetitive endogenous RNAs (ceRNAs) regulate mRNA transcripts containing common microRNA (miRNA) recognition elements (MREs) through sequestration of shared miRNAs. Interactions of ceRNA have been demonstrated in cancerous cells. However, a paucity of information is available relative to the interactions of ceRNAs interaction in diabetes mellitus and the myocardium.
View Article and Find Full Text PDF