Extracellular vesicles (EVs) are garnering attention as a safe and efficient biomolecule delivery system. EVs intrinsically play a crucial role in intercellular communication and pathophysiology by transporting functionally active DNA molecules. The internalized DNA pleiotropically affects the recipient cells.
View Article and Find Full Text PDFExtracellular vesicles (EVs) transport nucleic acids, proteins, and lipid molecules for intercellular communication. The biomolecular cargo from EVs can modify the recipient cell genetically, physiologically, and pathologically. This innate ability of EVs can be harnessed to deliver the cargo of interest to a specific organ or a cell type.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) possesses a small but significant population of cancer stem cells (CSCs) thought to play a role in its invasiveness, recurrence, and metastasis. The CSCs display transcriptional profiles for multipotency, self-renewal, tumorigenesis, and therapy resistance. There are two possible theories regarding the origin of CSCs in the context of neural stem cells (NSCs); i.
View Article and Find Full Text PDFExosomes participate in intercellular communication by transporting functionally active molecules. Such cargo from the original cells comprising proteins, micro-RNA, mRNA, single-stranded (ssDNA) and double-stranded DNA (dsDNA) molecules pleiotropically transforms the target cells. Although cancer cells secrete exosomes carrying a significant level of DNA capable of modulating oncogene expression in a recipient cell, the regulatory mechanism is unknown.
View Article and Find Full Text PDFExosomes, nanovesicles secreted by all cells, carry out intercellular communication by transmitting biologically active cargo comprising DNA, RNA, and proteins. These biomolecules reflect the status of their parent cells and can be altered by pathological conditions. Therefore, the researchers have been investigating differential sequences and quantities of DNA associated with exosomes as valuable biomarkers of diseases.
View Article and Find Full Text PDFMethods Mol Biol
October 2021
Pseudogenes, once considered the "junk remnants of genes," are found to significantly affect the regulatory network of healthy and cancer cells, as well as to be highly specific markers of cancer cell identity. Qualitative and quantitative analysis of pseudogenes has a diagnostic and prognostic value in cancer research via the detection of cell-free pseudogenic DNA circulating throughout the body. Exosomes, nanoparticles with a lipid membrane secreted by almost all types of cells, carry cellular-blueprint molecules, including pseudogenic DNA, as cancer-specific cargo.
View Article and Find Full Text PDFCancerous and non-cancerous cells secrete exosomes, a type of nanovesicle known to carry the molecular signature of the parent for intercellular communications. Exosomes secreted by tumor cells carry abnormal DNA, RNA, and protein molecules that reflect the cancerous status. DNA is the master molecule that ultimately affects the function of RNA and proteins.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) is the most common form of brain cancer, with an average life expectancy of fewer than two years post-diagnosis. We have previously reported that cancer cell originated exosomes, including GBM, have NANOG and NANOGP8 DNA associated with them. The exosomal NANOG DNA has certain differences as compared to its normal counterpart that are of immense importance as a potential cancer biomarker.
View Article and Find Full Text PDFNANOG has been demonstrated to play an essential role in the maintenance of embryonic stem cells, and its pseudogene, NANOGP8, is suggested to promote the cancer stem cell phenotype. As the roles of these genes are intimately involved with glioblastoma multiforme progression and exosomes are critical in intercellular communication, we conducted a detailed analysis of the association of the NANOG gene family with exosomes to identify diagnostic markers for cancer. Exosomes were precipitated from conditioned culture media from various cell lines, and NANOG gene fragments were directly amplified without DNA isolation using multiple primer sets.
View Article and Find Full Text PDFStem cell therapies have been proposed as a treatment option for neurodegenerative diseases, but the best stem cell source and therapeutic efficacy for neuroregeneration remain uncertain. Embryonic stem cells (ESCs) and neural stem cells (NSCs), which can efficiently generate neural cells, could be good candidates but they pose ethical and practical issues. Not only difficult to find the good source of those cells but also they alway pose immunorejection problem since they may not be an autologous cells.
View Article and Find Full Text PDFDiagnosing infectious diseases using quantitative polymerase chain reaction (qPCR) offers a conclusive result in determining the infection, the strain or type of pathogen, and the level of infection. However, due to the high-cost instrumentation involved and the complexity in maintenance, it is rarely used in the field to make a quick turnaround diagnosis. In order to provide a higher level of accessibility than current qPCR devices, a set of 3D manufacturing methods is explored as a possible option to fabricate a low-cost and portable qPCR device.
View Article and Find Full Text PDFIn Agrobacterium-mediated genetic transformation of plant cells, the bacterium exports a well defined transferred DNA (T-DNA) fragment and a series of virulence proteins into the host cell. Following its nuclear import, the single-stranded T-DNA is stripped of its escorting proteins, most likely converts to a double-stranded (ds) form, and integrates into the host genome. Little is known about the precise mechanism of T-DNA integration in plants, and no plant proteins specifically associated to T-DNA have been identified.
View Article and Find Full Text PDFTrends Plant Sci
January 2006
Agrobacterium-mediated genetic transformation is the most widely used technology for obtaining the overexpression of recombinant proteins in plants. However, complex patent issues related to the use of Agrobacterium as a tool for plant genetic engineering and the general requirement of establishing transgenic plants can create obstacles in using this technology for speedy research and development and for agricultural improvements in many plant species. Recent studies addressing these issues have shown that virus-based vectors can be efficiently used for high transient expression of foreign proteins in transfected plants and that non-Agrobacterium bacterial species can be used for the production of transgenic plants, laying the foundation for alternative tools for future plant biotechnology.
View Article and Find Full Text PDFAgrobacterium-mediated genetic transformation of plants, a unique example of transkingdom DNA transfer, requires the presence of several proteins encoded by the host cell. One such cellular factor is VIP1, an Arabidopsis protein proposed to interact with and facilitate import of the bacterial DNA-protein transport (T) complexes into the plant cell nucleus. Thus, VIP1 is required for transient expression of the bacterial DNA, an early step in the transformation process.
View Article and Find Full Text PDFTo genetically transform plants, Agrobacterium exports its transferred DNA (T-DNA) and several virulence (Vir) proteins into the host cell. Among these proteins, VirE3 is the only one whose biological function is completely unknown. Here, we demonstrate that VirE3 is transferred from Agrobacterium to the plant cell and then imported into its nucleus via the karyopherin alpha-dependent pathway.
View Article and Find Full Text PDFGenetic transformation of plant cells by Agrobacterium represents a unique case of trans-kingdom DNA transfer. During this process, Agrobacterium exports its transferred (T) DNA and several virulence (Vir) proteins into the host cell, within which T-DNA nuclear import is mediated by VirD2 (ref. 3) and VirE2 (ref.
View Article and Find Full Text PDFAgrobacterium tumefaciens-mediated genetic transformation involves transfer of a single-stranded T-DNA molecule (T strand) into the host cell, followed by its integration into the plant genome. The molecular mechanism of T-DNA integration, the culmination point of the entire transformation process, remains largely obscure. Here, we studied the roles of double-stranded breaks (DSBs) and double-stranded T-DNA intermediates in the integration process.
View Article and Find Full Text PDFAgrobacterium is a unique model system as well as a major biotechnological tool for genetic manipulation of plant cells. It is still unknown, however, whether host cellular factors exist that are limiting for infection, and whether their overexpression in plant cells can increase the efficiency of the infection. Here, we examined the effect of overexpression in tobacco plants of an Arabidopsis gene, VIP1, which encodes a recently discovered cellular protein required for Agrobacterium infection.
View Article and Find Full Text PDF