Lung cancer is the most common causes of death among all cancer-related diseases. A lung scan examination of the patient is the primary diagnostic technique. This scan analysis pertains to an MRI, CT, or X-ray.
View Article and Find Full Text PDFThe electroencephalogram-based motor imagery (MI-EEG) classification task is significant for brain-computer interface (BCI). EEG signals need a lot of channels to be acquired, which makes it difficult to use in real-world applications. Choosing the optimal channel subset without severely impacting the classification performance is a problem in the field of BCI.
View Article and Find Full Text PDFCardiovascular diseases (CVD) represent a significant global health challenge, often remaining undetected until severe cardiac events, such as heart attacks or strokes, occur. In regions like Qatar, research focused on non-invasive CVD identification methods, such as retinal imaging and dual-energy X-ray absorptiometry (DXA), is limited. This study presents a groundbreaking system known as Multi-Modal Artificial Intelligence for Cardiovascular Disease (M2AI-CVD), designed to provide highly accurate predictions of CVD.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) is a powerful tool for tumor diagnosis in human brain. Here, the MRI images are considered to detect the brain tumor and classify the regions as meningioma, glioma, pituitary and normal types. Numerous existing methods regarding brain tumor detection were suggested previously, but none of the methods accurately categorizes the brain tumor and consumes more computation period.
View Article and Find Full Text PDFMed Biol Eng Comput
September 2023
Electrocardiogram (ECG) is a non-invasive medical tool that divulges the rhythm and function of the human heart. This is broadly employed in heart disease detection including arrhythmia. Arrhythmia is a general term for abnormal heart rhythms that can be identified and classified into many categories.
View Article and Find Full Text PDF