Publications by authors named "Manjunath Ramarao"

Recent literature reports highlight the importance of the renal outer medullary potassium (ROMK) channel in renal sodium and potassium homeostasis and emphasize the potential impact that ROMK inhibitors could have as a novel mechanism diuretic in heart failure patients. A series of piperazine-based ROMK inhibitors were designed and optimized to achieve excellent ROMK potency, hERG selectivity, and ADME properties, which led to the identification of compound (BMS-986308). BMS-986308 demonstrated efficacy in the volume-loaded rat diuresis model as well as promising in vitro and in vivo profiles and was therefore advanced to clinical development.

View Article and Find Full Text PDF
Article Synopsis
  • Recent studies on mice suggest that AAK1 could be a promising target for treating neuropathic pain, which led to the development of a new drug called BMS-986176/LX-9211 that is currently in phase II trials.
  • Researchers also discovered additional highly selective and effective AAK1 inhibitors through structure-activity relationship studies, which showed promising results in neuropathic pain models with strong ability to penetrate the CNS.
  • Among these compounds, one central pyridine isomer proved to be four times more potent than BMS-986176/LX-9211 with better efficacy but had a less favorable toxicity profile in preclinical tests.
View Article and Find Full Text PDF

Recent mouse knockout studies identified adapter protein-2 associated kinase 1 (AAK1) as a viable target for treating neuropathic pain. Potent small-molecule inhibitors of AAK1 have been identified and show efficacy in various rodent pain models. ()-1-((2',6-Bis(difluoromethyl)-[2,4'-bipyridin]-5-yl)oxy)-2,4-dimethylpentan-2-amine (BMS-986176/LX-9211) () was identified as a highly selective, CNS penetrant, potent AAK1 inhibitor from a novel class of bi(hetero)aryl ethers.

View Article and Find Full Text PDF

Galectin-3 (Gal-3), a β-galactoside-binding lectin, has been implicated in a plethora of pathological disorders including fibrosis, inflammation, cancer and metabolic diseases. TD139-a thio-digalactoside inhibitor developed by Galecto Biotech as a potential therapeutic for idiopathic pulmonary fibrosis-is the most advanced small-molecule Gal-3 inhibitor in clinical studies. It binds to human Gal-3 with high affinity but has lower affinity towards mouse and rat homologs, which is also manifested in the differential inhibition of Gal-3 function.

View Article and Find Full Text PDF

Objective: Despite the significant advancement in the understanding of the pathophysiology of systemic lupus erythematosus (SLE) variable clinical response to newer therapies remain a major concern, especially for patients with lupus nephritis and neuropsychiatric systemic lupus erythematosus (NPSLE). We performed this study with an objective to comprehensively characterize Indian SLE patients with renal and neuropsychiatric manifestation with respect to their gene signature, cytokine profile and immune cell phenotypes.

Methods: We characterized 68 Indian SLE subjects with diverse clinical profiles and disease activity and tried to identify differentially expressed genes and enriched pathways.

View Article and Find Full Text PDF

Expression and functional changes in the organic anion transporting polypeptide (OATP)-multidrug resistance-associated protein (MRP) axis of transporters are well reported in patients with nonalcoholic steatohepatitis (NASH). These changes can impact plasma and tissue disposition of endo- and exogenous compounds. The transporter alterations are often assessed by administration of a xenobiotic or by transporter proteomic analysis from liver biopsies.

View Article and Find Full Text PDF

Background: A significant proportion of patients suffering from major depression fail to remit following treatment and develop treatment-resistant depression. Developing novel treatments requires animal models with good predictive validity. MRL/lpr mice, an established model of systemic lupus erythematosus, show depression-like behavior.

View Article and Find Full Text PDF

There is a significant unmet medical need for more efficacious and rapidly acting antidepressants. Toward this end, negative allosteric modulators of the -methyl-d-aspartate receptor subtype GluN2B have demonstrated encouraging therapeutic potential. We report herein the discovery and preclinical profile of a water-soluble intravenous prodrug BMS-986163 () and its active parent molecule BMS-986169 (), which demonstrated high binding affinity for the GluN2B allosteric site ( = 4.

View Article and Find Full Text PDF

()-3-((3S,4S)-3-fluoro-4-(4-hydroxyphenyl)piperidin-1-yl)-1-(4-methylbenzyl)pyrrolidin-2-one (BMS-986169) and the phosphate prodrug 4-((3,4)-3-fluoro-1-((R)-1-(4-methylbenzyl)-2-oxopyrrolidin-3-yl)piperidin-4-yl)phenyl dihydrogen phosphate (BMS-986163) were identified from a drug discovery effort focused on the development of novel, intravenous glutamate -methyl-d-aspartate 2B receptor (GluN2B) negative allosteric modulators (NAMs) for treatment-resistant depression (TRD). BMS-986169 showed high binding affinity for the GluN2B subunit allosteric modulatory site (K = 4.03-6.

View Article and Find Full Text PDF

Approximately 30-60% of patients treated with existing antidepressants fail to achieve remission of depressive symptoms leading to Treatment Resistant Depression (TRD). There is an urgent need to develop novel medications, which is highly limited by the non-availability of relevant animal models with good predictive validity. ACTH administration has been shown to result in the resistance to acute and chronic effects of imipramine.

View Article and Find Full Text PDF

Background And Purpose: Activators of K 11.1 (hERG) channels have potential utility in the treatment of acquired and congenital long QT (LQT) syndrome. Here, we describe a new hERG channel activator, 5-(((1H-indazol-5-yl)oxy)methyl)-N-(4-(trifluoromethoxy)phenyl)pyrimidin-2-amine (ITP-2), with a chemical structure distinct from previously reported compounds.

View Article and Find Full Text PDF

Cynomolgus monkeys are a commonly used species in preclinical drug discovery, and have high genetic similarity to humans, especially for the drug-metabolizing cytochrome P450s. However, species differences are frequently observed in the metabolism of drugs between cynomolgus monkeys and humans, and delineating these differences requires expressed CYPs. Toward this end, cynomolgus monkey CYP3A4 (c3A4) was cloned and expressed in a novel human embryonic kidney 293-6E cell suspension system.

View Article and Find Full Text PDF

Intestinal alkaline phosphatases (IAPs) are involved in the cleavage of phosphate prodrugs to liberate the drug for absorption in the intestine. To facilitate in vitro characterization of phosphate prodrugs, we have cloned, expressed, purified and characterized IAPs from rat and cynomolgus monkey (rIAP and cIAP respectively) which are important pre-clinical species for drug metabolism studies. The recombinant rat and monkey enzymes expressed in Sf9 insect cells (IAP-Ic) were found to be glycosylated and active.

View Article and Find Full Text PDF

Cytosolic phospholipase A(2) alpha (cPLA(2)alpha, type IVA phospholipase) acts at the membrane surface to release free arachidonic acid, which is metabolized into inflammatory mediators, including leukotrienes and prostaglandins. Thus, specific cPLA(2)alpha inhibitors are predicted to have antiinflammatory properties. However, a key criterion in the identification and development of such inhibitors is to distinguish between compounds that bind stoichiometrically to cPLA(2)alpha and nonspecific membrane perturbants.

View Article and Find Full Text PDF

The optimization of a class of indole cPLA 2 alpha inhibitors is described herein. The importance of the substituent at C3 and the substitution pattern of the phenylmethane sulfonamide region are highlighted. Optimization of these regions led to the discovery of 111 (efipladib) and 121 (WAY-196025), which are shown to be potent, selective inhibitors of cPLA 2 alpha in a variety of isolated enzyme assays, cell based assays, and rat and human whole blood assays.

View Article and Find Full Text PDF

The synthesis and structure-activity relationship of a series of benzenesulfonamide indole inhibitors of cPLA(2)alpha are described. Substitution of the benzenesulfonamide led to analogues with 50-fold improvement in potency versus the unsubstituted benzenesulfonamide lead compound. Rat pharmacokinetics in a minimal formulation was used to prioritize compounds, leading to the discovery of a potent inhibitor of cPLA(2)alpha with oral efficacy in models of rat carrageenan paw edema and Ascaris suum airway challenge in naturally sensitized sheep.

View Article and Find Full Text PDF

The synthesis and structure-activity relationship of a series of indole inhibitors of cytosolic phospholipase A2alpha (cPLA2alpha, type IVA phospholipase) are described. Inhibitors of cPLA2alpha are predicted to be efficacious in treating asthma as well as the signs and symptoms of osteoarthritis, rheumatoid arthritis, and pain. The introduction of a benzyl sulfonamide substituent at C2 was found to impart improved potency of these inhibitors, and the SAR of these sulfonamide analogues is disclosed.

View Article and Find Full Text PDF

Fatty acid amide hydrolase (FAAH) is a membrane-associated enzyme that catalyzes the hydrolysis of several endogenous bioactive lipids, including anandamide (AEA), N-palmitoylethanolamine (PEA), oleamide, and N-oleoylethanolamine (OEA). These fatty acid amides participate in many physiological activities such as analgesia, anxiety, sleep modulation, anti inflammatory responses, and appetite suppression. Because FAAH plays an essential role in controlling the tone and activity of these endogenous bioactive lipids, this enzyme has been implicated to be a drug target for the therapeutic management of pain, anxiety, and other disorders.

View Article and Find Full Text PDF

A binding assay for human fatty acid amide hydrolase (FAAH) using the scintillation proximity assay (SPA) technology is described. This SPA uses the specific interactions of [3H]R(+)-methanandamide (MAEA) and FAAH expressing microsomes to evaluate the displacement activity of FAAH inhibitors. We observed that a competitive nonhydrolyzed FAAH inhibitor, [3H]MAEA, bound specifically to the FAAH microsomes.

View Article and Find Full Text PDF

A novel fluorescent assay to continuously monitor fatty acid amide hydrolase (FAAH) activity that is simple, sensitive, and amenable to high-throughput screening (HTS) of compound libraries is described in this article. Stable Chinese hamster ovary (CHO) cell lines expressing either human FAAH or an inactive mutant, FAAH-S241A, were established. Arachidonyl 7-amino, 4-methyl coumarin amide (AAMCA), a novel fluorogenic substrate for FAAH, was designed and synthesized.

View Article and Find Full Text PDF

We previously cloned Siva-1 by using the cytoplasmic tail of CD27, a member of the tumor necrosis factor receptor family, as the bait in the yeast two-hybrid system. The Siva gene is organized into four exons that code for the predominant full-length Siva-1 transcript, whereas its alternate splice form, Siva-2, lacks exon 2 coding sequence. Various groups have demonstrated a role for Siva-1 in several apoptotic pathways.

View Article and Find Full Text PDF