Cytosolic phospholipase A(2) alpha (cPLA(2)alpha, type IVA phospholipase) acts at the membrane surface to release free arachidonic acid, which is metabolized into inflammatory mediators, including leukotrienes and prostaglandins. Thus, specific cPLA(2)alpha inhibitors are predicted to have antiinflammatory properties. However, a key criterion in the identification and development of such inhibitors is to distinguish between compounds that bind stoichiometrically to cPLA(2)alpha and nonspecific membrane perturbants.
View Article and Find Full Text PDFThe optimization of a class of indole cPLA 2 alpha inhibitors is described herein. The importance of the substituent at C3 and the substitution pattern of the phenylmethane sulfonamide region are highlighted. Optimization of these regions led to the discovery of 111 (efipladib) and 121 (WAY-196025), which are shown to be potent, selective inhibitors of cPLA 2 alpha in a variety of isolated enzyme assays, cell based assays, and rat and human whole blood assays.
View Article and Find Full Text PDFThe synthesis and structure-activity relationship of a series of benzenesulfonamide indole inhibitors of cPLA(2)alpha are described. Substitution of the benzenesulfonamide led to analogues with 50-fold improvement in potency versus the unsubstituted benzenesulfonamide lead compound. Rat pharmacokinetics in a minimal formulation was used to prioritize compounds, leading to the discovery of a potent inhibitor of cPLA(2)alpha with oral efficacy in models of rat carrageenan paw edema and Ascaris suum airway challenge in naturally sensitized sheep.
View Article and Find Full Text PDFThe synthesis and structure-activity relationship of a series of indole inhibitors of cytosolic phospholipase A2alpha (cPLA2alpha, type IVA phospholipase) are described. Inhibitors of cPLA2alpha are predicted to be efficacious in treating asthma as well as the signs and symptoms of osteoarthritis, rheumatoid arthritis, and pain. The introduction of a benzyl sulfonamide substituent at C2 was found to impart improved potency of these inhibitors, and the SAR of these sulfonamide analogues is disclosed.
View Article and Find Full Text PDFFatty acid amide hydrolase (FAAH) is a membrane-associated enzyme that catalyzes the hydrolysis of several endogenous bioactive lipids, including anandamide (AEA), N-palmitoylethanolamine (PEA), oleamide, and N-oleoylethanolamine (OEA). These fatty acid amides participate in many physiological activities such as analgesia, anxiety, sleep modulation, anti inflammatory responses, and appetite suppression. Because FAAH plays an essential role in controlling the tone and activity of these endogenous bioactive lipids, this enzyme has been implicated to be a drug target for the therapeutic management of pain, anxiety, and other disorders.
View Article and Find Full Text PDFA binding assay for human fatty acid amide hydrolase (FAAH) using the scintillation proximity assay (SPA) technology is described. This SPA uses the specific interactions of [3H]R(+)-methanandamide (MAEA) and FAAH expressing microsomes to evaluate the displacement activity of FAAH inhibitors. We observed that a competitive nonhydrolyzed FAAH inhibitor, [3H]MAEA, bound specifically to the FAAH microsomes.
View Article and Find Full Text PDFA novel fluorescent assay to continuously monitor fatty acid amide hydrolase (FAAH) activity that is simple, sensitive, and amenable to high-throughput screening (HTS) of compound libraries is described in this article. Stable Chinese hamster ovary (CHO) cell lines expressing either human FAAH or an inactive mutant, FAAH-S241A, were established. Arachidonyl 7-amino, 4-methyl coumarin amide (AAMCA), a novel fluorogenic substrate for FAAH, was designed and synthesized.
View Article and Find Full Text PDF