Publications by authors named "Manjunath D Ghate"

Globally, lung cancer is a significant public health concern due to its role as the leading cause of cancer-related mortalities. The promising target of EGFR for lung cancer treatment has been identified, providing a potential avenue for more effective therapies. The purpose of the study was to design a library of 1843 coumarin-1,2,3-triazole hybrids and screen them based on a designed pharmacophore to identify potential inhibitors targeting EGFR in lung cancer with minimum or no side effects.

View Article and Find Full Text PDF

The discovery and development of isoform-selective histone deacetylase (HDAC) inhibitor is a challenging task because of the sequence homology among HDAC enzymes. In the present work, novel tetrahydro benzo[b]thiophene-3-carbonitrile based benzamides were designed, synthesized, and evaluated as HDAC inhibitors. Pharmacophore modeling was our main design strategy, and two novel series of tetrahydro benzo[b]thiophene-3-carbonitrile derivatives with piperidine linker (series 1) and piperazine linker (series 2) were identified as HDAC inhibitors.

View Article and Find Full Text PDF

Histone deacetylases (HDACs) have been implicated in a number of diseases including cancer, cardiovascular disorders, diabetes mellitus, neurodegenerative disorders and inflammation. For the treatment of epigenetically altered diseases such as cancer, HDAC inhibitors have made a significant progress in terms of development of isoform selective inhibitiors. Isoform specific HDAC inhibitors have less adverse events and better safety profile.

View Article and Find Full Text PDF

Phosphodiesterase 10A is a member of Phosphodiesterase (PDE)-superfamily of the enzyme which is responsible for hydrolysis of cAMP and cGMP to their inactive forms 5'-AMP and 5'-GMP, respectively. PDE10A is highly expressed in the brain, particularly in the putamen and caudate nucleus. PDE10A plays an important role in the regulation of localization, duration, and amplitude of the cyclic nucleotide signalling within the subcellular domain of these regions, and thereby modulation of PDE10A enzyme can give rise to a new therapeutic approach in the treatment of schizophrenia and other neurodegenerative disorders.

View Article and Find Full Text PDF

Tuberculosis (TB) is one of the world's deadliest infectious diseases, caused by (). In the present study, a 3D QSAR study was performed for the design of novel substituted benzimidazole derivatives as anti-mycobacterial agents. The anti-tubercular activity of the designed compounds was predicted using the generated 3D QSAR models.

View Article and Find Full Text PDF

Following our research for human dihydroorotate dehydrogenase (hDHODH) inhibitors as anticancer agents, herein we describe 3D QSAR-based design, synthesis and in vitro screening of 2-,4,-6-, and/or 7-substituted quinoline derivatives as hDHODH inhibitors and anticancer agents. We have designed 2-,4,-6-, and/or 7-substituted quinoline derivatives and predicted their hDHODH inhibitory activity based on 3D QSAR study on 45 substituted quinoline derivatives as hDHODH inhibitors, and also predicted toxicity. Designed compounds were docked into the binding site of hDHODH.

View Article and Find Full Text PDF

c-Met is a prototype member of a subfamily of heterodimeric receptor tyrosine kinases (RTKs) and is the receptor for hepatocyte growth factor (HGF). Binding of HGF to its receptor c-Met, initiates a wide range of cellular signalling, including those involved in proliferation, motility, migration and invasion. Importantly, dysregulated HGF/c-Met signalling is a driving factor for numerous malignancies and promotes tumour growth, invasion, dissemination and/or angiogenesis.

View Article and Find Full Text PDF

The synthesis of 1,2,5-trisubstituted benzimidazole derivatives was carried out using liquid phase combinatorial approach using soluble polymer assisted support (PEG5000). Synthesised compounds were characterised by FTIR, ESI-MS, H NMR and C NMR. The purity of compounds was confirmed with HPLC analysis.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is one of the major global metabolic disorders characterized by insulin resistance and chronic hyperglycemia. Inhibition of the enzyme, dipeptidyl peptidase-4 (DPP-4) has been proved as successful and safe therapy for the treatment of T2DM since last decade. In order to design novel DPP-4 inhibitors, various in silico studies such as 3D-QSAR, pharmacophore modeling and virtual screening were performed and on the basis of the combined results of them, total 50 triazolo[5,1-c][1,2,4]triazine derivatives were designed and mapped on the best pharmacophore model.

View Article and Find Full Text PDF

Filamenting temperature-sensitive mutant (FtsZ) is a novel target for the treatment of tuberculosis. A series of (R)-2-(4'-chlorophenyl)-3-(4'-nitrophenyl)-1,2,3,5-tetrahydrobenzo[4,5] imidazo[1,2-c]pyrimidin-4-ol derivatives were designed and docked on the FtsZ protein crystal structure (PDB Id: 1RLU, resolution 2.08 Å).

View Article and Find Full Text PDF

In continuation of our research for novel human dihydroorotate dehydrogenase (hDHODH) inhibitors, herein we reported design, synthesis and pharmacological evaluation of novel substituted quinoline-2-carboxamide derivatives. Human DHODH enzyme inhibition assay was used to screen the synthesized compounds as hDHODH inhibitors. The synthesized compounds were also evaluated for their antiproliferative effects on the cancer cell lines (HEP-3B and A-375) to establish a proof as anticancer agents.

View Article and Find Full Text PDF

Dipeptidyl peptidase-4 (DPP-4) is one of the widely explored novel targets for Type 2 diabetes mellitus (T2DM) currently. Research has been focused on the strategy to preserve the endogenous glucagon like peptide (GLP)-1 activity by inhibiting the DPP-4 action. The DPP-4 inhibitors are weight neutral, well tolerated and give better glycaemic control over a longer duration of time compared to existing conventional therapies.

View Article and Find Full Text PDF

Liquid-phase combinatorial library synthesis is commonly developed into the viable alternatives or adjunct across the broad spectrum of polymer-supported organic chemistry. It includes the use of soluble polymer supports in the combinatorial synthesis of peptides and small-molecular library compounds which act as catalyst and reagent supports. It also includes high throughput biological screening with generation and evaluation of chemical leads for drug discovery development.

View Article and Find Full Text PDF

Benzopyran derivatives are the potassium channel openers (KCOs) having antihypertensive, cardio-protective, myocardial protectors, powerful peripheral vasodilators and anti-ischemic activity. Their usage as anti-ischemic including angina, hypertension and diabetes is thought to be due to the stimulation of KATP channels which are contemplated to produce vasorelaxation and myocardial protection. It is observed that potassium channels are involved in mediating the cardio-protective effects of pre-conditioning in animal models and man.

View Article and Find Full Text PDF

Recent developments and novel research strategies are adopted widely to discover and develop the new drugs to treat tuberculosis. New antitubercular drugs are urgently needed because tuberculosis remains a global health problem as around nine million new cases are estimated each year with almost two million fatalities. It states the impact and outcomes that have made a significant effect in antitubercular drug development.

View Article and Find Full Text PDF

Benzimidazole plays an important role in the medicinal chemistry and drug discovery with many pharmacological activities which have made an indispensable anchor for discovery of novel therapeutic agents. Substitution of benzimidazole nucleus is an important synthetic strategy in the drug discovery process. Therapeutic properties of the benzimidazole related drugs have encouraged the medicinal chemists to synthesize novel therapeutic agents.

View Article and Find Full Text PDF

An urgent need for the discovery of novel anticancer agents is required for the long term therapy of cancer. Large number of novel bio-active and potential anticancer agents are being used in clinical and pre-clinical trials. Although many heterocyclic compounds are already available commercially as anticancer agents, great efforts have been put to identify novel anticancer targets.

View Article and Find Full Text PDF

Benzimidazole plays an important role in the medicinal chemistry and drug discovery with many pharmacological activities which have made an indispensable anchor for discovery of novel therapeutic agents. Substitution of benzimidazole nucleus is an important synthetic strategy in the drug discovery process. Therapeutic properties of the benzimidazole related drugs have encouraged the medicinal chemists to synthesize novel therapeutic agents.

View Article and Find Full Text PDF