Publications by authors named "Manjunath B Joshi"

Article Synopsis
  • Metabolic disorders are a major global health issue, prompting research into drugs with improved effectiveness and fewer side effects, particularly from traditional Indian medicine using Tinospora cordifolia and Tinospora sinensis.
  • The study aimed to identify unique metabolite fingerprints from these plants across various geographic locations and establish potential quality markers for treatment.
  • Non-targeted metabolite fingerprinting techniques revealed six key marker compounds, with specific metabolites linked to geographic variations, indicating trans piceid, crustecdysone, and gallic acid as promising candidates for addressing metabolic disorders, though further studies are needed to confirm these results.
View Article and Find Full Text PDF

Neutrophils, as essential component of the innate immune response, form a crucial part in the defence mechanisms through the release of extracellular traps (NETs). These web-like structures, composed of chromatin and antimicrobial proteins, are essential for the entrapment and inactivation of pathogens. However, either constitutive formation or inefficient clearance of NETs leads to adverse effects such as fibrosis, thrombosis, delayed wound healing and tissue damage in multiple diseases associated with sterile inflammation.

View Article and Find Full Text PDF
Article Synopsis
  • Exercise training is increasingly recognized as a valuable addition to medical treatment for pulmonary arterial hypertension (PAH), but the metabolic changes it induces are not well understood.
  • The study involved male Wistar rats, which were divided into four groups, with some undergoing treadmill exercise for five weeks to analyze metabolic effects.
  • Results indicated significant alterations in lipid and amino acid metabolism due to PAH, but exercise helped restore normal levels of arginine and homocysteine, potentially improving PAH outcomes.
View Article and Find Full Text PDF

In response to hyperglycemia, endothelial cells (ECs) release exosomes with altered protein content and contribute to paracrine signalling, subsequently leading to vascular dysfunction in type 2 diabetes (T2D). High glucose reprograms DNA methylation patterns in various cell/tissue types, including ECs, resulting in pathologically relevant changes in cellular and extracellular proteome. However, DNA methylation-based proteome reprogramming in endothelial exosomes and associated pathological implications in T2D are not known.

View Article and Find Full Text PDF

In recent years, there has been a drastic surge in neurological disorders with sporadic cases contributing more than ever to their cause. Radiation exposure through diagnostic or therapeutic routes often results in neurological injuries that may lead to neurodegenerative pathogenesis. However, the underlying mechanisms regulating the neurological impact of exposure to near-low doses of ionizing radiation are not known.

View Article and Find Full Text PDF

Extremely preterm infants are at risk of developing retinopathy of prematurity (ROP), characterized by neovascularization and neuroinflammation leading to blindness. Polyunsaturated fatty acid (PUFA) supplementation is recommended in preterm infants to lower the risk of ROP, however, with no significant improvement in visual acuity. Reasonably, this could be as a result of the non-consideration of PUFA metabolizing enzymes.

View Article and Find Full Text PDF

Atherosclerosis is a complex and multigenic pathology associated with significant epigenetic reprogramming. Traditional factors (age, sex, obesity, hyperglycaemia, dyslipidaemia, hypertension) and non-traditional factors (foetal indices, microbiome alteration, clonal hematopoiesis, air pollution, sleep disorders) induce endothelial dysfunction, resulting in reduced vascular tone and increased vascular permeability, inflammation and shear stress. These factors induce paracrine and autocrine interactions between several cell types, including vascular smooth muscle cells, endothelial cells, monocytes/macrophages, dendritic cells and T cells.

View Article and Find Full Text PDF

Background: Pulmonary hypertension (PH) is a debilitating condition characterized by elevated pulmonary arterial pressure and progressive vascular remodelling, leading to exercise intolerance. The progression of PAH is regulated at a cellular and molecular level which influences various physiological processes. Exercise plays an important role in improving function in PH.

View Article and Find Full Text PDF

The emergence of multidrug resistance in cancer cells necessitates the development of new therapeutic modalities. One way cancer cells orchestrate energy metabolism and redox homeostasis is through overloaded iron pools directed by iron regulatory proteins, including transferrin. Here, we demonstrate that targeting redox homeostasis using nitrogen-based heterocyclic iron chelators and their iron complexes efficiently prevents the proliferation of liver cancer cells (EC: 340 nM for IITK4003) and liver cancer 3D spheroids.

View Article and Find Full Text PDF

Extrinsic and intrinsic pathological stimuli in vascular disorders induce DNA methylation based epigenetic reprogramming in endothelial cells, which leads to perturbed gene expression and subsequently results in endothelial dysfunction (ED). ED is also characterized by release of exosomes with altered proteome leading to paracrine interactions in vasculature and subsequently contributing to manifestation, progression and severity of vascular complications. However, epigenetic regulation of exosome proteome is not known.

View Article and Find Full Text PDF

Neutrophils play a vital role in the innate immunity by perform effector functions through phagocytosis, degranulation, and forming extracellular traps. However, over-functioning of neutrophils has been associated with sterile inflammation such as Type 2 Diabetes, atherosclerosis, cancer and autoimmune disorders. Neutrophils exhibiting phenotypical and functional heterogeneity in both homeostatic and pathological conditions suggests distinct signaling pathways are activated in disease-specific stimuli and alter neutrophil functions.

View Article and Find Full Text PDF

Senescence due to exogenous and endogenous stresses triggers metabolic reprogramming and is associated with many pathologies, including cancer. In solid tumors, senescence promotes tumorigenesis, facilitates relapse, and changes the outcomes of anti-cancer therapies. Hence, cellular and molecular mechanisms regulating senescent pathways make attractive therapeutic targets.

View Article and Find Full Text PDF

PRIP Interacting protein with Methyl Transferase domain (PIMT/TGS1) is an integral upstream coactivator in the peroxisome proliferator-activated receptor gamma (PPARγ) transcriptional apparatus. PPARγ activation alleviates insulin resistance but promotes weight gain. Herein, we show how PIMT regulates body weight while promoting insulin sensitivity in diet induced obese mice.

View Article and Find Full Text PDF

Breast tumors are highly vascularized and dependent on angiogenesis for growth, progression and metastasis. Like other solid tumors, vasculature in breast tumors also display leaky and tortuous phenotype and hence inhibit immune cell infiltration, show reduced efficacy to anticancer drugs and radiotherapy. Epigenetic reprogramming including significant alterations in DNA methylation in tumor and stromal cells generate an imbalance in expression of pro- and anti-angiogenic factors and subsequently lead to disordered angiogenesis.

View Article and Find Full Text PDF

Introduction: Neutrophils are component of innate immune system and a) eliminate pathogens b) maintain immune homeostasis by regulating other immune cells and c) contribute to the resolution of inflammation. Neutrophil mediated inflammation has been described in pathogenesis of various diseases. This indicates neutrophils do not represent homogeneous population but perform multiple functions through confined subsets.

View Article and Find Full Text PDF
Article Synopsis
  • Metabolic and inflammatory pathways are closely linked, with both becoming disrupted in Type 2 diabetes (T2D), leading to an environment that encourages chronic inflammation and immune dysfunction.
  • T2D-related changes, like high blood sugar and elevated lipids, significantly impact neutrophils, which are key immune cells responsible for fighting infections, leaving individuals more susceptible to recurrent infections.
  • The review highlights how altered metabolism in neutrophils affects their functionality, contributing to poor wound healing and tissue regeneration in T2D, while also exploring potential therapeutic approaches to manage these complications.
View Article and Find Full Text PDF

Adaptability to intracellular or extracellular cues is essential for maintaining cellular homeostasis. Metabolic signals intricately control the morphology and functions of mitochondria by regulating bioenergetics and metabolism. Here, we describe the involvement of PHLPP1, a Ser/Thr phosphatase, in mitochondrial homeostasis.

View Article and Find Full Text PDF

Polycystic ovarian syndrome (PCOS) is a complicated endocrinopathy with an unclear etiology that afflicts fertility status in women. Although the underlying causes and pathophysiology of PCOS are not completely understood, it is suspected to be driven by environmental factors as well as genetic and epigenetic factors. Bisphenol A (BPA) is a weak estrogenic endocrine disruptor known to cause adverse reproductive outcomes in women.

View Article and Find Full Text PDF

L. (Gokshura) is a medicinal herb used for treating cardiac diseases and several other diseases. However, the active ingredients and the possible mechanism of action for treating cardiac diseases remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Andrographolide (AG), a compound from Andrographis paniculata known for its health benefits, struggles with poor solubility and bioavailability, which limits its therapeutic use.
  • This study focused on creating and optimizing AG-loaded nanoliposomes (AGL) and enhancing them with mannosylated chitosan (MCS) to improve AG's absorption when taken orally.
  • Results showed that the MCS-AGL formulations provided sustained drug release, significantly improved AG's permeability, and enhanced its bioavailability and stability in vivo, highlighting MCS's potential as a valuable tool for boosting poorly soluble drugs.
View Article and Find Full Text PDF

The exposure to blue and white Light emitting diodes (LED) light leads to damage in the visual system with short-term LED light exposure. Chronic exposure, adaptive responses to light, and self-protective mechanisms against LED light exposures need to be explored, and it would be essential to understand the repercussions of LED radiation on vitreous metabolites. A total of 24 male Wistar rats were used in this study, divided into four groups (n = 6 in each group).

View Article and Find Full Text PDF

Lipidomics is a branch of omics biology that enables the characterization and determination of different lipid classes. Mass spectrometry is a widely used tool to identify and obtain qualitative and quantitative measurements of the range of lipid species in various cell/tissue types. Human retina is highly rich in different classes of lipids that are liable to undergo modification such as oxidation, isomerization, peroxidation, and hydroxylation due to continuous metabolic activity in response to light photons.

View Article and Find Full Text PDF
Article Synopsis
  • Metal toxicity can negatively impact human health, and Ayurveda's Rasashastra explores the therapeutic uses of minerals, including Abhraka Bhasma, a herbo-metallic preparation of mica.
  • This study examines the effects of Abhraka Bhasma on genotoxicity, DNA repair, and other biological mechanisms using Swiss albino mice, focusing on its potential benefits and safety.
  • Results showed that Abhraka Bhasma is not genotoxic and can protect against DNA damage, enhancing DNA repair mechanisms and showcasing its beneficial properties.
View Article and Find Full Text PDF

That reversible protein phosphorylation by kinases and phosphatases occurs in metabolic disorders is well known. Various studies have revealed that a multi-faceted and tightly regulated phosphatase, pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP)-1/2 displays robust effects in cardioprotection, ischaemia/reperfusion (I/R), and vascular remodelling. PHLPP1 promotes foamy macrophage development through ChREBP/AMPK-dependent pathways.

View Article and Find Full Text PDF

Pesticides have been used in agriculture, public health programs, and pharmaceuticals for many decades. Though pesticides primarily target pests by affecting their nervous system and causing other lethal effects, these chemical entities also exert toxic effects in inadvertently exposed humans through inhalation or ingestion. Mounting pieces of evidence from cellular, animal, and clinical studies indicate that pesticide-exposed models display metabolite alterations of pathways involved in neurodegenerative diseases.

View Article and Find Full Text PDF