Hydrogel formulations of xenogeneic extracellular matrices have been widely used for topical wound care because of their exceptional tunability over other formulations like lyophilized sheets, powders, non-injectable gels, pastes, and ointments. This is important in the treatment of wounds with irregular shapes and depth. This study identified an injectable hydrogel formulation of porcine cholecyst extracellular matrix (60%) in medical-grade carboxymethyl cellulose (40%) as vehicle and evaluated its biomaterial properties.
View Article and Find Full Text PDFHypertrophic scarring (HTS) is an aberrant form of wound healing that is associated with excessive deposition of extracellular matrix and connective tissue at the site of injury. In this review article, we provide an overview of normal (acute) wound healing phases (hemostasis, inflammation, proliferation, and remodeling). We next discuss the dysregulated and/or impaired mechanisms in wound healing phases that are associated with HTS development.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
September 2022
Cardiac tissue engineering using cells, scaffolds or signaling molecules is a promising approach for replacement or repair of damaged myocardium. This study addressed the contemporary need for a conductive biomimetic nanocomposite scaffold for cardiac tissue engineering by examining the use of a gold nanoparticle-incorporated porcine cholecystic extracellular matrix for the same. The scaffold had an electrical conductivity (0.
View Article and Find Full Text PDFCompromised angiogenesis is a major factor contributing delayed wound healing in diabetic patients. Graft-assisted healing using synthetic and natural scaffolds supplemented with micromolecules for stimulating angiogenesis is the contemporary tissue engineering strategy for treating diabetic wounds. This study deployed the carbodiimide chemical reaction for coupling gelatin with a porcine cholecyst-derived scaffold (CDS) for enhancing angiogenesis.
View Article and Find Full Text PDFPolypropylene (PP) meshes are widely used for repairing skeletal muscle defects like abdominal hernia despite the chances of undesirable pro-inflammatory tissue reactions that demand revision surgeries in about 45% of cases. Attempts have been made to address the problem by modifying the mesh surface and architecture. These procedures have yielded only incremental improvements in the management of overall postoperative complications, and the search for a clinically viable therapeutic strategy continues.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
April 2020
Treatment with cross-linking agents for stabilizing biomolecules is an integral step during the preparation of many extracellular matrix-based tissue engineering scaffolds from mammalian organs. However, excess cross-linking may cause nonavailability of biomolecules and consequent deterioration of bioinductive properties of the scaffold. The present study considered controlling the extent of cross-linking in a porcine cholecyst extracellular matrix scaffold prepared by a nonenzymatic and nondetergent method, by ex situ incubation of the source organ in varying concentrations of neutral buffered formaldehyde (10, 4, 1 or 0%; v/v) for in situ cross-linking of biomolecules.
View Article and Find Full Text PDF