The magnetic susceptibility of synthesized magnetite (FeO) microspheres was found to decline after the growth of a metal-organic framework (MOF) shell on the magnetite core. Detailed structural analysis of the core-shell particles using scanning electron microscopy, transmission electron microscopy, atom probe tomography, andFe-Mössbauer spectroscopy suggests that the distribution of MOF precursors inside the magnetic core resulted in the oxidation of the iron oxide core.
View Article and Find Full Text PDFPolarization-induced weak ferromagnetism (WFM) was demonstrated a few years back in LiNbO-type compounds, MTiO (M = Fe, Mn, Ni). Although the coexistence of ferroelectric polarization and ferromagnetism has been demonstrated in this rare multiferroic family before, first in bulk FeTiO, then in thin-film NiTiO, the coupling of the two order parameters has not been confirmed. Here, we report the stabilization of polar, ferromagnetic NiTiO by oxide epitaxy on a LiNbO substrate utilizing tensile strain and demonstrate the theoretically predicted coupling between its polarization and ferromagnetism by X-ray magnetic circular dichroism under applied fields.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs); also known as porous coordination polymers (PCP) are a class of porous crystalline materials constructed by connecting metal clusters via organic linkers. The possibility of functionalization leads to virtually infinite MOF designs using generic modular methods. Functionalized MOFs can exhibit interesting physical and chemical properties including accelerated adsorption kinetics and catalysis.
View Article and Find Full Text PDFMetal-organic heat carriers (MOHCs) are recently developed nanofluids containing metal-organic framework (MOF) nanoparticles dispersed in various base fluids including refrigerants (R245Fa) and methanol. Here, we report the synthesis and characterization of MOHCs containing nanoMIL-101(Cr) and graphene oxide (GO) in an effort to improve the thermo-physical properties of various base fluids. MOHC/GO nanocomposites showed enhanced surface area, porosity, and nitrogen adsorption compared with the intrinsic nanoMIL-101(Cr) and the properties depended on the amount of GO added.
View Article and Find Full Text PDFThree water adsorption-desorption mechanisms are common in inorganic materials: chemisorption, which can lead to the modification of the first coordination sphere; simple adsorption, which is reversible; and condensation, which is irreversible. Regardless of the sorption mechanism, all known materials exhibit an isotherm in which the quantity of water adsorbed increases with an increase in relative humidity. Here, we show that carbon-based rods can adsorb water at low humidity and spontaneously expel about half of the adsorbed water when the relative humidity exceeds a 50-80% threshold.
View Article and Find Full Text PDFWe studied the interactions between the carboxylate anchoring group from trimethylacetic acid (TMAA) and CeO2(111) surfaces as a function of oxygen stoichiometry using in situ X-ray photoelectron spectroscopy (XPS). The stoichiometric CeO2(111) surface was obtained by annealing the thin film under 2.0 × 10(-5) Torr of oxygen at ∼550 °C for 30 min.
View Article and Find Full Text PDFA dual oxidative approach using O2 plasma followed by treatment with H2 O2 to impart oxygen functional groups onto the surface of a graphite felt electrode. When used as electrodes for an all-vanadium redox flow battery (VRB) system, the energy efficiency of the cell is enhanced by 8.2 % at a current density of 150 mA cm(-2) compared with one oxidized by thermal treatment in air.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2015
Hydrogenated TiO2 (H-TiO2) is touted as a viable visible light photocatalyst. We report a systematic study on the thermal stability of H-implanted TiO2 using nuclear reaction analysis (NRA), Rutherford backscattering spectrometry, ultraviolet photoelectron spectroscopy, and X-ray photoelectron spectroscopy. Protons (40 keV) implanted at a ∼2 atom % level within a ∼120 nm wide profile of rutile TiO2(110) were situated ∼300 nm below the surface.
View Article and Find Full Text PDFLow-cost renewable lignin has been used as a precursor to produce porous carbons. However, to date, it has not been easy to obtain high surface area porous carbon without activation processes or templating agents. Here, we demonstrate that low molecular weight lignin yields highly porous carbon with more graphitization through direct carbonization without additional activation processes or templating agents.
View Article and Find Full Text PDFA hierarchically structured nitrogen-doped porous carbon is prepared from a nitrogen-containing isoreticular metal-organic framework (IRMOF-3) using a self-sacrificial templating method. IRMOF-3 itself provides the carbon and nitrogen content as well as the porous structure. For high carbonization temperatures (950 °C), the carbonized MOF required no further purification steps, thus eliminating the need for solvents or acid.
View Article and Find Full Text PDFAn optical plasmonic-based sensing array has been developed and tested for the selective and sensitive detection of H(2), CO, and NO(2) at a temperature of 500 °C in an oxygen-containing background. The three-element sensing array used Au nanoparticles embedded in separate thin films of yttria-stabilized zirconia (YSZ), CeO(2), and TiO(2). A peak in the absorbance spectrum due to a localized surface plasmon resonance (LSPR) on the Au nanoparticles was monitored for each film during gas exposures and showed a blue shift in the peak positions for the reducing gases, H(2) and CO, and a red shift for the oxidizing gas, NO(2).
View Article and Find Full Text PDFA Au-CeO(2) nanocomposite film has been investigated as a potential sensing element for high-temperature plasmonic sensing of H(2), CO, and NO(2) in an oxygen containing environment. The CeO(2) thin film was deposited by molecular beam epitaxy (MBE), and Au was implanted into the as-grown film at an elevated temperature followed by high temperature annealing to form well-defined Au nanoclusters. The Au-CeO(2) nanocomposite film was characterized by X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS).
View Article and Find Full Text PDF