A cationic 7-aminomethyl-7-deaza-2'-deoxyguanosine (7amG) was incorporated site-specifically into the self-complementary duplex d(G¹A²G³A⁴X⁵C⁶G⁷C⁸T⁹C¹⁰T¹¹C¹²)₂ (X = 7amG). This construct placed two positively charged amines adjacent to the major groove edges of two symmetry-related guanines, providing a model for probing how cation binding in the major groove modulates the structure and stability of DNA. Molecular dynamics calculations restrained by nuclear magnetic resonance (NMR) data revealed that the tethered cationic amines were in plane with the modified base pairs.
View Article and Find Full Text PDFOxidation of DNA due to exposure to reactive oxygen species is a major source of DNA damage. One of the oxidation lesions formed, 5-hydroxy-2'-deoxycytidine, has been shown to miscode by some replicative DNA polymerases but not by error prone polymerases capable of translesion synthesis. The 5-hydroxy-2'-deoxycytidine lesion is repaired by DNA glycosylases that require the 5-hydroxycytidine base to be extrahelical so it can enter into the enzyme's active site where it is excised off the DNA backbone to afford an abasic site.
View Article and Find Full Text PDFAs part of an ongoing effort to explore the effect of major groove electrostatics on the thermodynamic stability and structure of DNA, a 7-deaza-2'-deoxyadenosine:dT (7-deaza-dA:dT) base pair in the Dickerson-Drew dodecamer (DDD) was studied. The removal of the electronegative N7 atom on dA and the replacement with an electropositive C-H in the major groove was expected to have a significant effect on major groove electrostatics. The structure of the 7-deaza-dA:dT base pair was determined at 1.
View Article and Find Full Text PDFIn many high-resolution structures of DNA there are ordered waters associated with the floor of the minor groove and extending outward in several layers. It is thought that this hydration structure, along with cations, reduces the Coulombic repulsion of the interstrand phosphates. In previous studies, the replacement of the 3-N atom of adenine with a C-H to afford 3-deazaadenine was shown to decrease the thermodynamic stability of DNA via a reduction in the enthalpic term.
View Article and Find Full Text PDFThe replacement of the 7-N atom on guanine (G) with a C-H to give 7-deazaguanine (c(7)G) alters the electronic properties of the heterocyclic base and eliminates a potential major groove cation binding site, which affects the organization of salts and water in the major groove. This has a destabilizing effect on DNA. We report herein the characterization of DNA oligomers containing 7-(aminomethyl)-7-deazaguanine (1) residues using a variety of spectroscopic and thermodynamic approaches.
View Article and Find Full Text PDFSite-specific insertion of 5-(3-aminopropyl)-2'-deoxyuridine (Z3dU) and 7-deaza-dG into the Dickerson-Drew dodecamers 5'-d(C (1)G (2)C (3)G (4)A (5)A (6)T (7)T (8)C (9) Z (10)C (11)G (12))-3'.5'-d(C (13)G (14)C (15)G (16)A (17)A (18)T (19)T (20)C (21) Z (22)C (23)G (24))-3' (named DDD (Z10)) and 5'-d(C (1)G (2)C (3)G (4)A (5)A (6)T (7) X (8)C (9) Z (10)C (11)G (12))-3'.5'-d(C (13)G (14)C (15)G (16)A (17)A (18)T (19) X (20)C (21) Z (22)C (23)G (24))-3' (named DDD (2+Z10)) (X = Z3dU; Z = 7-deaza-dG) suggests a mechanism underlying the formation of interstrand N+2 DNA cross-links by nitrogen mustards, e.
View Article and Find Full Text PDFNucleic Acids Res
November 2007
The incorporation of 7-deazaguanine modifications into DNA is frequently used to probe protein recognition of H-bonding information in the major groove of DNA. While it is generally assumed that 7-deazaguanine forms a normal Watson-Crick base pair with cytosine, detailed thermodynamic and structural analyses of this modification have not been reported. The replacement of the 7-N atom on guanine with a C-H, alters the electronic properties of the heterocycle and eliminates a major groove cation-binding site that could affect the organization of salts and water in the major groove.
View Article and Find Full Text PDF