To obtain safe, high-performance Li-ion batteries, the development of electrolytes with high impact resistance and high ionic conductivity is important. Ionic conductivity at room temperature has been improved by using poly(ethylene glycol) (PEG) diacrylate (PEGDA) to form three-dimensional (3D) networks and solvated ionic liquids. However, the effects of the molecular weight of PEGDA on ionic conductivities and the relationship between ionic conductivities and network structures of cross-linked polymer electrolytes have not been discussed in detail.
View Article and Find Full Text PDFHigh ionic conductivity, suitable mechanical strength, and electrochemical stability are the main requirements for high-performance poly(ethylene oxide)-based electrolytes. However, the low ionic conductivity owing to the crystallinity of the ethylene oxide chain that limits the discharge rate and low-temperature performance has restricted the development and commercialization of these electrolytes. Lithium electrolytes that combine high ionic conductivity with a high lithium transference number are rare and are essential for high-power batteries.
View Article and Find Full Text PDFThe oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are important processes for various energy devices, including polymer electrolyte fuel cells, rechargeable metal-air batteries, and water electrolyzers. We herein report the preparation of a rare metal-free and highly efficient ORR/OER electrocatalyst by calcination of a mixture of blood meal and ascidian-derived cellulose nanofibers. The obtained carbon alloys showed high ORR/OER performances and proved to be promising electrocatalysts.
View Article and Find Full Text PDFWe propose a surface modification of poorly dispersive polytetrafluoroethylene (PTFE) particles via bioinspired polydopamine-polyethyleneimine (PDA-PEI) which conferred PTFE particles a uniform dispersion in aqueous medium. With increasing dopamine concentration in the reaction solution, dispersity of PTFE particles improved and the surface charges of particles changed from negative to positive due to an increase of surface coverage of PDA-PEI layers. Simplicity of the method here outlines an attractive route for surface modification of inert surfaces useful for large-scale applications.
View Article and Find Full Text PDFBiomimetic synthetic functional materials are valuable for a large number of practical applications with improved or tunable performance. In this paper, we present a series of mussel-inspired biomimetic catechol-containing copolymers synthesized from dopamine methacrylamide (DMA) and 2-(2-ethoxyethoxy)ethyl acrylate (EEA) and abbreviated as poly(PDMA-PEEA). The successfully synthesized adhesive polymers allow adhering polytetrafluoroethylene (PTFE) and were used for coating PTFE particles in organic solvent and re-dispersion in an aqueous medium.
View Article and Find Full Text PDF