Publications by authors named "Manjesh K Singh"

A thixotropic colloidal gel constituting an aqueous dispersion of synthetic clay Laponite with varying concentrations of salt has been studied for its rheological and tribological performance as a lubricant. We observed that the incorporation of NaCl induces notable enhancements in the colloidal gel's relaxation time, elastic modulus, and yield stress. Although an increase in NaCl concentration decreases the material's relaxation time dependence on waiting time (), overall, the strength of its thixotropic character has been observed to increase with an increase in salt concentration.

View Article and Find Full Text PDF

Using molecular dynamics (MD) simulations of a generic model, we investigated heat propagation in bottle-brush polymers (BBP). An architecture is referred to as a BBP when a linear (backbone) polymer is grafted with the side chains of different length and grafting density ρ, which control the bending stiffness of a backbone. Investigating κ-behavior in BBP is of particular interest due to two competing mechanics: increased backbone stiffness, via and ρ, increases the thermal transport coefficient κ, while the presence of side chains provides additional pathways for heat leakage.

View Article and Find Full Text PDF

A new straight forward approach to create nanoporous polymer membranes with well defined average pore diameters is presented. The method is based on fast mechanical deformation of highly entangled polymer films at high temperatures and a subsequent quench far below the glass transition temperature T . The process is first designed generally by simulation and then verified for the example of polystyrene films.

View Article and Find Full Text PDF

Indentation is a common experimental technique to study the mechanics of polymeric materials. The main advantage of using indentation is this provides a direct correlation between the microstructure and the small-scale mechanical response, which is otherwise difficult within the standard tensile testing. The majority of studies have investigated hydrogels, microgels, elastomers, and even soft biomaterials.

View Article and Find Full Text PDF

Understanding the heat flow in polymers is at the onset of many developments in designing advanced functional materials. Here, however, amorphous linear polymers usually exhibit a very low thermal conductivity κ, often hindering their broad applications. In this context, two common routes to increase κ are via semicrystallinity and cross-linking.

View Article and Find Full Text PDF

The creation of synthetic polymer nanoobjects with well-defined hierarchical structures is important for a wide range of applications such as nanomaterial synthesis, catalysis, and therapeutics. Inspired by the programmability and precise three-dimensional architectures of biomolecules, here we demonstrate the strategy of fabricating controlled hierarchical structures through self-assembly of folded synthetic polymers. Linear poly(2-hydroxyethyl methacrylate) of different lengths are folded into cyclic polymers and their self-assembly into hierarchical structures is elucidated by various experimental techniques and molecular dynamics simulations.

View Article and Find Full Text PDF

We study the effect of entanglements on the glass transition of high molecular weight polymers, by the comparison of single-chain nanoparticles (SCNPs) and equilibrated melts of high-molecular weight polystyrene of identical molecular weight. SCNPs were prepared by electrospraying technique and characterized using scanning electron microscopy and atomic force microscopy techniques. Differential scanning calorimetry, Brillouin light spectroscopy, and rheological experiments around the glass transition were compared.

View Article and Find Full Text PDF

The solvent quality determines the collapsed or the expanded state of a polymer. For example, a polymer dissolved in a poor solvent collapses, whereas in a good solvent it opens up. While this standard understanding is generally valid, there are examples when a polymer collapses even in a mixture of two good solvents.

View Article and Find Full Text PDF

We have studied the effect of cross-linking on the tribological behavior of polymer brushes using a combined experimental and theoretical approach. Tribological and indentation measurements on poly(glycidyl methacrylate) brushes and gels in the presence of dimethylformamide solvent were obtained by means of atomic force microscopy. To complement experiments, we have performed corresponding molecular dynamics (MD) simulations of a generic bead-spring model in the presence of explicit solvent and cross-linkers.

View Article and Find Full Text PDF

We have performed coarse-grained molecular-dynamics simulations on both flexible and semiflexible multi-bead-spring model polymer brushes in the presence of explicit solvent particles, to explore their tribological and structural behaviors. The effect of stiffness and tethering density on equilibrium-brush height is seen to be well reproduced within a Flory-type theory. After discussing the equilibrium behavior of the model brushes, we first study the shearing behavior of flexible chains at different grafting densities covering brush and mushroom regimes.

View Article and Find Full Text PDF

Surfaces coated with polymer brushes in a good solvent are known to exhibit excellent tribological properties. We have performed coarse-grained equilibrium and nonequilibrium molecular dynamics (MD) simulations to investigate dextran polymer brushes in an aqueous environment in molecular detail. In a first step, we determined simulation parameters and units by matching experimental results for a single dextran chain.

View Article and Find Full Text PDF