We investigate the emergence of self-hybridized thermal magnetoplasmons in doped graphene nanodisks at finite temperatures upon being subjected to an external magnetic field. Using a semianalytical approach, which fully describes the eigenmodes and polarizability of the graphene nanodisks, we show that the hybridization originates from the coupling of transitions between thermally populated Landau levels and localized magnetoplasmon resonances of the nanodisks. Owing to their origin, these modes combine the extraordinary magneto-optical response of graphene with the strong field enhancement of plasmons, making them an ideal tool for achieving strong chiral light-matter interactions, with the additional advantage of being tunable through carrier concentration, magnetic field, and temperature.
View Article and Find Full Text PDFBound states in the continuum (BICs) in metasurfaces have lately attracted a great deal of attention stemming from their inherent (formally) divergent factors, which lead to an enhancement of light-matter interaction in two-dimensional geometries. However, the development of plausible means to actively manipulate them remains a major challenge. The use of graphene layers has recently been suggested, employed either as a substrate or a coating that modifies the dielectric environment of the metasurface.
View Article and Find Full Text PDFAs a result of their coherent interaction, two-dimensional periodic arrays of metallic nanostructures support collective modes commonly known as lattice resonances. Among them, out-of-plane lattice resonances, for which the nanostructures are polarized in the direction perpendicular to the array, are particularly interesting since their unique configuration minimizes radiative losses. Consequently, these modes present extremely high quality factors and field enhancements that make them ideal for a wide range of applications.
View Article and Find Full Text PDFPhotocathodes are key elements in high-brightness electron sources and ubiquitous in the operation of large-scale accelerators, although their operation is often limited by their quantum efficiency and lifetime. Here, we propose to overcome these limitations by utilizing direct-laser nanostructuring techniques on copper substrates, improving their efficiency and robustness for next-generation electron photoinjectors. When the surface of a metal is nanoengineered with patterns and particles much smaller than the optical wavelength, it can lead to the excitation of localized surface plasmons that produce hot electrons, ultimately contributing to the overall charge produced.
View Article and Find Full Text PDFSingle-photon emitters are a pivotal element in quantum technologies, but the generation of single photons along well-defined directions generally involves sophisticated configurations. Here, we propose a photon source capable of generating single photons with high efficiency along guided modes. Specifically, we consider a quantum emitter placed in a periodically patterned linear waveguide.
View Article and Find Full Text PDFLattice resonances are collective electromagnetic modes supported by periodic arrays of metallic nanostructures. These excitations arise from the coherent multiple scattering between the elements of the array and, thanks to their collective origin, produce very strong and spectrally narrow optical responses. In recent years, there has been significant effort dedicated to characterizing the lattice resonances supported by arrays built from complex unit cells containing multiple nanostructures.
View Article and Find Full Text PDFThe fluctuations of the electromagnetic field are at the origin of the near-field radiative heat transfer between nanostructures, as well as the Casimir forces and torques that they exert on each other. Here, working within the formalism of fluctuational electrodynamics, we investigate the simultaneous transfer of energy and angular momentum in a pair of rotating nanostructures. We demonstrate that, due to the rotation of the nanostructures, the radiative heat transfer between them can be increased, decreased, or even reversed with respect to the transfer that occurs in the absence of rotation, which is solely determined by the difference in the temperature of the nanostructures.
View Article and Find Full Text PDFPeriodic arrays of metallic nanostructures support collective lattice resonances, which give rise to optical responses that are, at the same time, stronger and more spectrally narrow than those of the localized plasmons of the individual nanostructures. Despite the extensive research effort devoted to investigating the optical properties of lattice resonances, the majority of theoretical studies have analyzed them under plane-wave excitation conditions. Such analysis not only constitutes an approximation to realistic experimental conditions, which require the use of finite-width light beams, but also misses a rich variety of interesting behaviors.
View Article and Find Full Text PDFThe near-field electromagnetic interaction between nanoscale objects produces enhanced radiative heat transfer that can greatly surpass the limits established by far-field blackbody radiation. Here, we present a theoretical framework to describe the temporal dynamics of the radiative heat transfer in ensembles of nanostructures, which is based on the use of an eigenmode expansion of the equations that govern this process. Using this formalism, we identify the fundamental principles that determine the thermalization of collections of nanostructures, revealing general but often unintuitive dynamics.
View Article and Find Full Text PDFElectrogenerated chemiluminescence (ECL) microscopy shows promise as a technique for mapping chemical reactions on single nanoparticles. The technique's spatial resolution is limited by the quantum yield of the emission and the diffusive nature of the ECL process. To improve signal intensity, ECL dyes have been coupled with plasmonic nanoparticles, which act as nanoantennas.
View Article and Find Full Text PDFLattice resonances, the collective modes supported by periodic arrays of metallic nanoparticles, give rise to very strong and spectrally narrow optical responses. Thanks to these properties, which emerge from the coherent multiple scattering enabled by the periodic ordering of the array, lattice resonances are used in a variety of applications such as nanoscale lasing and biosensing. Here, we investigate the lattice resonances supported by bipartite nanoparticle arrays.
View Article and Find Full Text PDFThe ability to harness light-matter interactions at the few-photon level plays a pivotal role in quantum technologies. Single photons-the most elementary states of light-can be generated on demand in atomic and solid state emitters. Two-photon states are also key quantum assets, but achieving them in individual emitters is challenging because their generation rate is much slower than competing one-photon processes.
View Article and Find Full Text PDFPeriodic arrays are an exceptionally interesting arrangement for metallic nanostructures because of their ability to support collective lattice resonances. These modes, which arise from the coherent multiple scattering enabled by the lattice periodicity, give rise to very strong and spectrally narrow optical responses. Here, we investigate the enhancement of the near-field produced by the lattice resonances of arrays of metallic nanoparticles when illuminated with a plane wave.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2019
Plasmon hybridization, the electromagnetic analog of molecular orbital theory, provides a simple and intuitive method to describe the plasmonic response of complex nanostructures from the combination of the responses of their individual constituents. Here, we follow this approach to investigate the optical properties of periodic arrays of plasmonic nanoparticles with multiparticle unit cells. These systems support strong collective lattice resonances, arising from the coherent multiple scattering enabled by the lattice periodicity.
View Article and Find Full Text PDFSurface plasmon polaritons (SPPs) have emerged as powerful tools for guiding and manipulating light below the diffraction limit. In this context, the availability of flat top SPP beams displaying a constant transversal profile can allow for uniform excitation and coupling scenarios, thus opening the door to developing novel applications that cannot be achieved using conventional Gaussian SPP beams. Here, we present a rigorous theoretical description of flat top SPP beams propagating along flat metal-dielectric interfaces.
View Article and Find Full Text PDFHeat dissipation in a plasmonic nanostructure is generally assumed to be ruled only by its own optical response even though also the temperature should be considered for determining the actual energy-to-heat conversion. Indeed, temperature influences the optical response of the nanostructure by affecting its absorption efficiency. Here, we show both theoretically and experimentally how, by properly nanopatterning a metallic surface, it is possible to increase or decrease the light-to-heat conversion rate depending on the temperature of the system.
View Article and Find Full Text PDFA promising trend in plasmonics involves shrinking the size of plasmon-supporting structures down to a few nanometers, thus enabling control over light-matter interaction at extreme-subwavelength scales. In this limit, quantum mechanical effects, such as nonlocal screening and size quantization, strongly affect the plasmonic response, rendering it substantially different from classical predictions. For very small clusters and molecules, collective plasmonic modes are hard to distinguish from other excitations such as single-electron transitions.
View Article and Find Full Text PDFThere is currently a worldwide need to develop efficient photocatalytic materials that can reduce the high-energy cost of common industrial chemical processes. One possible solution focuses on metallic nanoparticles (NPs) that can act as efficient absorbers of light due to their surface plasmon resonance. Recent work indicates that small NPs, when photoexcited, may allow for efficient electron or hole transfer necessary for photocatalysis.
View Article and Find Full Text PDFWe study the lateral Casimir force experienced by a particle that rotates near a planar surface. The origin of this force lies in the symmetry breaking induced by the particle rotation in the vacuum and thermal fluctuations of its dipole moment, and therefore, in contrast to lateral Casimir forces previously described in the literature for corrugated surfaces, it exists despite the translational invariance of the planar surface. Working within the framework of fluctuational electrodynamics, we derive analytical expressions for the lateral force and analyze its dependence on the geometrical and material properties of the system.
View Article and Find Full Text PDFLight absorption in conducting materials produces heating of their conduction electrons, followed by relaxation into phonons within picoseconds, and subsequent diffusion into the surrounding media over longer timescales. This conventional picture of optical heating is supplemented by radiative cooling, which typically takes place at an even lower pace, only becoming relevant for structures held in vacuum or under extreme thermal isolation. Here, we reveal an ultrafast radiative cooling regime between neighboring plasmon-supporting graphene nanostructures in which noncontact heat transfer becomes a dominant channel.
View Article and Find Full Text PDFCharged polycyclic aromatic hydrocarbons (PAHs), ultrasmall analogs of hydrogen-terminated graphene consisting of only a few fused aromatic carbon rings, have been shown to possess molecular plasmon resonances in the visible region of the spectrum. Unlike larger nanostructures, the PAH absorption spectra reveal rich, highly structured spectral features due to the coupling of the molecular plasmons with the vibrations of the molecule. Here, we examine this molecular plasmon-phonon interaction using a quantum mechanical approach based on the Franck-Condon approximation.
View Article and Find Full Text PDFActive optical processes such as amplification and stimulated emission promise to play just as important a role in nanoscale optics as they have in mainstream modern optics. The ability of metallic nanostructures to enhance optical nonlinearities at the nanoscale has been shown for a number of nonlinear and active processes; however, one important process yet to be seen is optical parametric amplification. Here, we report the demonstration of surface plasmon-enhanced difference frequency generation by integration of a nonlinear optical medium, BaTiO3, in nanocrystalline form within a plasmonic nanocavity.
View Article and Find Full Text PDFThe intense local field induced near metallic nanostructures provides strong enhancements for surface-enhanced spectroscopies, a major focus of plasmonics research over the past decade. Here we consider that plasmonic nanoparticles can also induce remarkably large electromagnetic field gradients near their surfaces. Sizeable field gradients can excite dipole-forbidden transitions in nearby atoms or molecules and provide unique spectroscopic fingerprinting for chemical and bimolecular sensing.
View Article and Find Full Text PDF