Publications by authors named "Manjari Narayan"

Large-scale networks underpin brain functions. How such networks respond to focal stimulation can help decipher complex brain processes and optimize brain stimulation treatments. To map such stimulation-response patterns across the brain non-invasively, we recorded concurrent EEG responses from single-pulse transcranial magnetic stimulation (i.

View Article and Find Full Text PDF

Introduction: The Human Connectome Project (HCP) has become a keystone dataset in human neuroscience, with a plethora of important applications in advancing brain imaging methods and an understanding of the human brain. We focused on tractometry of HCP diffusion-weighted MRI (dMRI) data.

Methods: We used an open-source software library (pyAFQ; https://yeatmanlab.

View Article and Find Full Text PDF

Cross-sectional studies have linked differences in white matter tissue properties to reading skills. However, past studies have reported a range of, sometimes conflicting, results. Some studies suggest that white matter properties act as individual-level traits predictive of reading skill, whereas others suggest that reading skill and white matter develop as a function of an individual's educational experience.

View Article and Find Full Text PDF

Background: Electrophysiological resting state functional connectivity using high density electroencephalography (hdEEG) is gaining momentum. The increased resolution offered by hdEEG, usually either 128 or 256 channels, permits source localization of EEG signals on the cortical surface. However, the number of methodological options for the acquisition and analysis of resting state hdEEG is extremely large.

View Article and Find Full Text PDF

For high-dimensional supervised learning, it is often beneficial to use domain-specific knowledge to improve the performance of statistical learning models. When the problem contains covariates which form groups, researchers can include this grouping information to find parsimonious representations of the relationship between covariates and targets. These groups may arise artificially, as from the polynomial expansion of a smaller feature space, or naturally, as from the anatomical grouping of different brain regions or the geographical grouping of different cities.

View Article and Find Full Text PDF

Dynamic correlation is the correlation between two time series across time. Two approaches that currently exist in neuroscience literature for dynamic correlation estimation are the sliding window method and dynamic conditional correlation. In this paper, we first show the limitations of these two methods especially in the presence of extreme values.

View Article and Find Full Text PDF

Objective: The authors sought to identify brain regions whose frequency-specific, orthogonalized resting-state EEG power envelope connectivity differs between combat veterans with posttraumatic stress disorder (PTSD) and healthy combat-exposed veterans, and to determine the behavioral correlates of connectomic differences.

Methods: The authors first conducted a connectivity method validation study in healthy control subjects (N=36). They then conducted a two-site case-control study of veterans with and without PTSD who were deployed to Iraq and/or Afghanistan.

View Article and Find Full Text PDF

Objective: A major challenge in understanding and treating posttraumatic stress disorder (PTSD) is its clinical heterogeneity, which is likely determined by various neurobiological perturbations. This heterogeneity likely also reduces the effectiveness of standard group comparison approaches. The authors tested whether a statistical approach aimed at identifying individual-level neuroimaging abnormalities that are more prevalent in case subjects than in control subjects could reveal new clinically meaningful insights into the heterogeneity of PTSD.

View Article and Find Full Text PDF

Background: Transcranial magnetic stimulation (TMS)-evoked potentials (TEPs), recorded using electroencephalography (TMS-EEG), offer a powerful tool for measuring causal interactions in the human brain. However, the test-retest reliability of TEPs, critical to their use in clinical biomarker and interventional studies, remains poorly understood.

Objective/hypothesis: We quantified TEP reliability to: (i) determine the minimal TEP amplitude change which significantly exceeds that associated with simply re-testing, (ii) locate the most reliable scalp regions of interest (ROIs) and TEP peaks, and (iii) determine the minimal number of TEP pulses for achieving reliability.

View Article and Find Full Text PDF

Many complex brain disorders, such as autism spectrum disorders, exhibit a wide range of symptoms and disability. To understand how brain communication is impaired in such conditions, functional connectivity studies seek to understand individual differences in brain network structure in terms of covariates that measure symptom severity. In practice, however, functional connectivity is not observed but estimated from complex and noisy neural activity measurements.

View Article and Find Full Text PDF

Identifying accurate biomarkers of cognitive decline is essential for advancing early diagnosis and prevention therapies in Alzheimer's disease. The Alzheimer's disease DREAM Challenge was designed as a computational crowdsourced project to benchmark the current state-of-the-art in predicting cognitive outcomes in Alzheimer's disease based on high dimensional, publicly available genetic and structural imaging data. This meta-analysis failed to identify a meaningful predictor developed from either data modality, suggesting that alternate approaches should be considered for prediction of cognitive performance.

View Article and Find Full Text PDF

Neurofibromatosis type I (NF1) is a genetic disorder caused by mutations in the neurofibromin 1 gene at locus 17q11.2. Individuals with NF1 have an increased incidence of learning disabilities, attention deficits, and autism spectrum disorders.

View Article and Find Full Text PDF

Synesthesia is a condition in which normal stimuli can trigger anomalous associations. In this study, we exploit synesthesia to understand how the synesthetic experience can be explained by subtle changes in network properties. Of the many forms of synesthesia, we focus on colored sequence synesthesia, a form in which colors are associated with overlearned sequences, such as numbers and letters (graphemes).

View Article and Find Full Text PDF