Publications by authors named "Manjanatha M"

The prevalence of ionic silver and silver nanomaterials in hygiene products has been increasing due to their antimicrobial activity. While numerous studies have examined the effects of nanosilver in laboratory settings, there is a limited understanding of its impact on reproductive tissues, as well as its biodistribution and toxicity upon intra-vaginal exposure. If ionic or nanosilver enters adjacent and internal tissues via intra-vaginal exposure, the overuse of hygiene products containing silver may potentially threaten woman's health.

View Article and Find Full Text PDF

Hydroxychloroquine (HCQ), a derivative of chloroquine (CQ), is an antimalarial and antirheumatic drug. Since there is limited data available on the genotoxicity of HCQ, in the current study, we used a battery of in vitro assays to systematically examine the genotoxicity of HCQ in human lymphoblastoid TK6 cells. We first showed that HCQ is not mutagenic in TK6 cells up to 80 μM with or without exogenous metabolic activation.

View Article and Find Full Text PDF
Article Synopsis
  • - The comet assay is a flexible method used to identify DNA damage in individual eukaryotic cells, applicable to various species from yeast to humans, detecting issues like DNA strand breaks and other forms of damage.
  • - Modifications to the protocol are necessary based on the specimen to minimize additional DNA damage during sample processing and to enhance the detection of damage differences.
  • - The method has been validated for various applications in research and has gained recognition as an in vivo genotoxicity test by the OECD, with guidelines provided for its use across different cell types and DNA damage assessments.
View Article and Find Full Text PDF

Three-dimensional (3D) culture systems are increasingly being used for genotoxicity studies due to improved cell-to-cell interactions and tissue-like structures that are limited or lacking in 2D cultures. The present study optimized a 3D culture system using metabolically competent HepaRG cells for in vitro genotoxicity testing. 3D HepaRG spheroids, formed in 96- or 384-well ultra-low attachment plates, were exposed to various concentrations of 34 test articles, including 8 direct-acting and 11 indirect-acting genotoxicants/carcinogens as well as 15 compounds that show different genotoxic responses in vitro and in vivo.

View Article and Find Full Text PDF

The Comet assay measures the generation of DNA strand breaks under conditions in which the DNA will unwind and migrate to the anode in an electrophoresis assay, producing comet-like figures. Measurements are on single cells, which allows the sampling of a diversity of cells and tissues for DNA damaging effects. The Comet assay is the most common method for genotoxicity assessment of nanomaterials (NM).

View Article and Find Full Text PDF

Genotoxicity testing is performed to determine potential hazard of a chemical or agent for direct or indirect DNA interaction. Testing may be a surrogate for assessment of heritable genetic risk or carcinogenic risk. Testing of nanomaterials (NM) for hazard identification is generally understood to require a departure from normal testing procedures found in international standards and guidelines.

View Article and Find Full Text PDF

Black cohosh extract (BCE) is one of the most popular botanical products for relieving menopausal symptoms. However, recent studies indicate that BCE is not only ineffective for menopausal therapy but also induces genotoxicity through an aneugenic mode of action (MoA). In this study, the cytotoxicity of five constituents of BCE was evaluated in human lymphoblastoid TK6 cells.

View Article and Find Full Text PDF

Black cohosh extract (BCE) is marketed to women as an alternative to hormone replacement therapy for alleviating menopausal symptoms. Previous studies by the National Toxicology Program revealed that BCE induced micronuclei (MN) and a nonregenerative macrocytic anemia in rats and mice, likely caused by disruption of the folate metabolism pathway. Additional work using TK6 cells showed that BCE induced aneugenicity by destabilizing microtubules.

View Article and Find Full Text PDF

Circadian disruption has been identified as a risk factor for health disorders such as obesity, cardiovascular disease, and cancer. Although epidemiological studies suggest an increased risk of various cancers associated with circadian misalignment due to night shift work, the underlying mechanisms have yet to be elucidated. We sought to investigate the potential mechanistic role that circadian disruption of cancer hallmark pathway genes may play in the increased cancer risk in shift workers.

View Article and Find Full Text PDF

Pyrrolizidine alkaloid (PA)-containing plants are among the most common poisonous plants affecting humans, livestock, and wildlife worldwide. A large number of PAs are known to induce genetic damage after metabolic activation. In the present study, using a battery of fourteen newly developed TK6 cell lines, each expressing a single human cytochrome P450 (CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C18, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7), we identified specific CYPs responsible for bioactivating three PAs - lasiocarpine, riddelliine, and senkirkine.

View Article and Find Full Text PDF

Primary human hepatocytes (PHHs) are considered the "gold standard" for evaluating hepatic metabolism and toxicity of xenobiotics. In the present study, we evaluated the genotoxic potential of four indirect-acting (requiring metabolic activation) and six direct-acting genotoxic carcinogens, one aneugen, and five non-carcinogens that are negative or equivocal for genotoxicity in vivo in cryopreserved PHHs derived from three individual donors. DNA damage was determined over a wide range of concentrations using the CometChip technology and the resulting dose-responses were quantified using benchmark dose (BMD) modeling.

View Article and Find Full Text PDF

Metabolism plays a key role in chemical genotoxicity; however, most mammalian cells used for in vitro genotoxicity testing lack effective metabolizing enzymes. We recently developed a battery of TK6-derived cell lines that individually overexpress 1 of 8 cytochrome P450s (CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19, and 3A4) using a lentiviral expression system. The increased expression and metabolic function of each individual CYP in each established cell line were confirmed using real-time PCR, Western blotting, and mass spectrometry analysis; the parental TK6 cells and empty vector (EV) transduced cells had negligible CYP levels.

View Article and Find Full Text PDF

The working group reached complete or majority agreement on many issues. Results from TGR and in vivo comet assays for 91 chemicals showed they have similar ability to detect in vivo genotoxicity per se with bacterial mutagens and Ames-positive carcinogens. TGR and comet assay results were not significantly different when compared with IARC Group 1, 2 A, and unclassified carcinogens.

View Article and Find Full Text PDF

Nanomaterials (NMs) present unique challenges in safety evaluation. An international working group, the Genetic Toxicology Technical Committee of the International Life Sciences Institute's Health and Environmental Sciences Institute, has addressed issues related to the genotoxicity assessment of NMs. A critical review of published data has been followed by recommendations on methods alterations and best practices for the standard genotoxicity assays: bacterial reverse mutation (Ames); in vitro mammalian assays for mutations, chromosomal aberrations, micronucleus induction, or DNA strand breaks (comet); and in vivo assays for genetic damage (micronucleus, comet and transgenic mutation assays).

View Article and Find Full Text PDF

DNA damage and alterations in global DNA methylation status are associated with multiple human diseases and are frequently correlated with clinically relevant information. Therefore, assessing DNA damage and epigenetic modifications, including DNA methylation, is critical for predicting human exposure risk of pharmacological and biological agents. We previously developed a higher-throughput platform for the single cell gel electrophoresis (comet) assay, CometChip, to assess DNA damage and genotoxic potential.

View Article and Find Full Text PDF

Ethylene oxide (EO) is a direct acting alkylating agent; in vitro and in vivo studies indicate that it is both a mutagen and a carcinogen. However, it remains unclear whether the mode of action (MOA) for cancer for EO is a mutagenic MOA, specifically via point mutation. To investigate the MOA for EO-induced mouse lung tumors, male Big Blue (BB) B6C3F1 mice (10/group) were exposed to EO by inhalation, 6 hr/day, 5 days/week for 4 (0, 10, 50, 100, or 200 ppm EO), 8, or 12 weeks (0, 100, or 200 ppm EO).

View Article and Find Full Text PDF

Noroviruses (NoV) have enhanced tropism for the gastrointestinal (GI) tract and are the major cause of nonbacterial gastroenteritis in humans. Titanium dioxide (TiO2) nanoparticles (NPs) used as food additives, dietary supplements, and cosmetics accumulate in the GI tract. We investigated the effect anatase TiO2 NPs on NoV replication and host response during virus infection, using murine norovirus (MNV-1) infection of RAW 264.

View Article and Find Full Text PDF

Potential health risks for humans from dietary exposure to acrylamide (AA) and its reactive epoxide metabolite, glycidamide (GA), exist because substantial amounts of AA are found in a variety of fried and baked starchy foods. AA is tumorigenic in rodents, and a large number of studies indicate that AA is genotoxic in multiple organs of mice and rats. Although AA is neurotoxic, there are no reports on AA-induced gene mutations in the mouse brain.

View Article and Find Full Text PDF

Noroviruses (NoV) are the leading cause of nonbacterial gastroenteritis in humans, and replicate extensively in the human gastrointestinal (GI) tract. Silica (also known as silicon dioxide, SiO) nanoparticles (NPs) used in processed foods, dairy products, and beverages also accumulate in the GI tract. We investigated the effect of silica NPs on NoV replication and host cell response during virus infection, using murine norovirus (MNV-1) infection of RAW 264.

View Article and Find Full Text PDF

Unrepaired DNA damage can lead to genetic instability, which in turn may enhance cancer development. Therefore, identifying potential DNA damaging agents is important for protecting public health. The in vivo alkaline comet assay, which detects DNA damage as strand breaks, is especially relevant for assessing the genotoxic hazards of xenobiotics, as its responses reflect the in vivo absorption, tissue distribution, metabolism and excretion (ADME) of chemicals, as well as DNA repair process.

View Article and Find Full Text PDF

Short-term phototoxicity testing is useful in selecting test agents for the longer and more expensive photocarcinogenesis safety tests; however, no validated short-term tests have been proven reliable in predicting the outcome of a photocarcinogenesis safety test. A transgenic, hairless, albino (THA) mouse model was developed that carries the gpt and red/gam [Spi(-)] genes from the gpt delta mouse background and the phenotypes from the SKH-1 mouse background to use as a short-term test in lieu of photocarcinogenesis safety tests. Validation of the THA mouse model was confirmed by exposing groups of male mice to sub-erythemal doses of ultraviolet B (UVB) irradiation for three consecutive days emitted from calibrated overhead, Kodacel-filtered fluorescent lamps and measuring the mutant frequencies (MFs) in the gpt and red/gam (Spi(-)) genes and types of mutations in the gpt gene.

View Article and Find Full Text PDF

Chronic inhalation of vanadium pentoxide (V2O5) increases the incidence of alveolar/bronchiolar tumors in male and female B6C3F1 mice at 1, 2, or 4 mg/m(3). The genotoxicity of V2O5 has been extensively investigated in the literature with mixed results. In general, tests for gene mutations have been negative.

View Article and Find Full Text PDF

Potential health risks for humans from exposure to acrylamide (AA) and its epoxide metabolite glycidamide (GA) have garnered much attention lately because substantial amounts of AA are present in a variety of fried and baked starchy foods. AA is tumorigenic in rodents, and a large number of in vitro and in vivo studies indicate that AA is genotoxic. A recent cancer bioassay on AA demonstrated that the lung was one of the target organs for tumor induction in mice; however, the mutagenicity of AA in this tissue is unclear.

View Article and Find Full Text PDF