Publications by authors named "Manivannan E"

The crystallization of ZrSiO is generally accomplished by the addition of mineralizers into ZrO-SiO binary oxides. The current investigation aimed to investigate the effect of adding calcium phosphates into ZrO-SiO binary oxides on the yield of ZrSiO. The concentration of calcium phosphate additions were varied to obtain ZrSiO that fetches improved mechanical and biological properties for application in hard tissue replacements.

View Article and Find Full Text PDF

The emergence and rapid spread of novel coronavirus disease (COVID-19) has posed a serious challenge to global public health in 2020. The speed of this viral spread together with the high mortality rate has caused an unprecedented public health crisis. With no antivirals or vaccines available for the treatment of COVID-19, the medical community is presently exploring repositioning of clinically approved drugs for COVID-19.

View Article and Find Full Text PDF

SARS-CoV-2 transmissibility is higher than that of other human coronaviruses; therefore, it poses a threat to the populated communities. We investigated mutations among envelope (E), membrane (M), and spike (S) proteins from different isolates of SARS-CoV-2 and plausible signaling influenced by mutated virus in a host. We procured updated protein sequences from the NCBI virus database.

View Article and Find Full Text PDF

COVID-19 pandemic has spread worldwide at an exponential rate affecting millions of people instantaneously. Currently, various drugs are under investigation to treat an enormously increasing number of COVID-19 patients. This dreadful situation clearly demands an efficient strategy to quickly identify drugs for the successful treatment of COVID-19.

View Article and Find Full Text PDF

The inhibition of apoptosis, disruption of cellular microtubule dynamics, and over-activation of the epithelial mesenchymal transition (EMT), are involved in the progression, metastasis, and resistance of colorectal cancer (CRC) to chemotherapy. Therefore, the design of a molecule that can target these pathways could be an effective strategy to reverse CRC progression and metastasis. In this study, twelve novel silybin derivatives, HM015a-HM015k (15a-15k) and compound 17, were screened for cytotoxicity in CRC cell lines.

View Article and Find Full Text PDF

A comprehensive set of 3-phenylcoumarin analogues with polar substituents was synthesised for blocking oestradiol synthesis by 17-β-hydroxysteroid dehydrogenase 1 (HSD1) in the latter part of the sulphatase pathway. Five analogues produced ≥62% HSD1 inhibition at 5 µM and, furthermore, three of them produced ≥68% inhibition at 1 µM. A docking-based structure-activity relationship analysis was done to determine the molecular basis of the inhibition and the cross-reactivity of the analogues was tested against oestrogen receptor, aromatase, cytochrome P450 1A2, and monoamine oxidases.

View Article and Find Full Text PDF

Monoamine oxidase B (MAO-B) catalyzes deamination of monoamines such as neurotransmitters dopamine and norepinephrine. Accordingly, small-molecule MAO-B inhibitors potentially alleviate the symptoms of dopamine-linked neuropathologies such as depression or Parkinson's disease. Coumarin with a functionalized 3-phenyl ring system is a promising scaffold for building potent MAO-B inhibitors.

View Article and Find Full Text PDF

This study was designed to determine the mechanisms by which the novel silybin derivative, (E)-3-(3-(benzyloxy) phenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one ( or ), produces its anticancer efficacy in ovarian cancer cells. Compound induced apoptosis in ovarian cancer cells in a time-dependent manner by significantly upregulating the expression of Bax and Bak and downregulating the expression of Bcl-2. Interestingly, induced the cleavage of Bax p21 into its more efficacious cleaved form, Bax p18.

View Article and Find Full Text PDF

The present study reports the synthesis and anticancer activity evaluation of twelve novel silybin analogues designed using a ring disjunctive-based natural product lead (RDNPL) optimization approach. All twelve compounds were tested against a panel of cancer cells (i.e.

View Article and Find Full Text PDF

Background: Number of contradictory reports are available on the effects of antiinflammatory drugs on Alzheimer's disease (AD) including beneficial, adverse and stage dependent effects. We provide insights of the effects exerted by some anti-inflammatory drugs on the chemistry of AD.

Methods: Three different doses of dexamethasone (0.

View Article and Find Full Text PDF

Utilization of computer-aided molecular discovery methods in virtual screening (VS) is a cost-effective approach to identify novel bioactive small molecules. Unfortunately, no universal VS strategy can guarantee high hit rates for all biological targets, but each target requires distinct, fine-tuned solutions. Here, we have studied in retrospective manner the effectiveness and usefulness of common pharmacophore hypothesis, molecular docking and negative image-based screening as potential VS tools for a widely applied drug discovery target, estrogen receptor α (ERα).

View Article and Find Full Text PDF

This report presents a simple strategy to introduce various functionalities in a cyanine dye (bis-indole-N-butylsulfonate-polymethine bearing a fused cyclic chloro-cyclohexene ring structure), and assess the impact of these substitutions in tumor uptake, retention and imaging. The results obtained from the structural activity relationship (SAR) study demonstrate that certain structural features introduced in the cyanine dye moiety make a remarkable difference in tumor avidity. Among the compounds investigated, the symmetrical CDs containing an amino-phenyl thioether group attached to a cyclohexene ring system and the two N-butyl linkers with terminal sulfonate groups in benzoindole moieties exhibited excellent tumor imaging ability in BALB/c mice bearing Colon26 tumors.

View Article and Find Full Text PDF

Chalcones are naturally occurring compounds exhibiting broad spectrum biological activities including anticancer activity through multiple mechanisms. Literature on anticancer chalcones highlights the employment of three pronged strategies, namely; structural manipulation of both aryl rings, replacement of aryl rings with heteroaryl scaffolds, molecular hybridization through conjugation with other pharmacologically interesting scaffolds for enhancement of anticancer properties. Methoxy substitutions on both the aryl rings (A and B) of the chalcones, depending upon their positions in the aryl rings appear to influence anticancer and other activities.

View Article and Find Full Text PDF

Glimepiride sulfonamide (GS) is a drug intermediate to synthesize glimepiride (antidiabetic drug). We hypothesized that GS exerts gluco-regulatory effect because GS is comprised of the structural components of dipeptidyl peptidase-IV (DPP-IV) inhibitors sitagliptin and DPP-728and glimepiride (sulfonylurea based antidiabetic drug).We analyzed the drug-likeness and docking efficiency of GS with DPP-IV using in silico tools.

View Article and Find Full Text PDF

6H-Indolo[2,3-b]quinoxaline, a planar fused heterocyclic compound exhibits a wide variety of pharmacological activities. The mechanism of pharmacological action exerted by these compounds is predominantly DNA intercalation. The thermal stability of the intercalated complex (DNA and 6H-indolo[2,3-b]quinoxaline derivatives) is an important parameter for the elucidation of anticancer, antiviral and other activities.

View Article and Find Full Text PDF

A series of methyl sulfanyl/methyl sufonyl substituted 2,3-diaryl-2,3-dihydro-1H-quinazolin-4-one were designed using analogue-based design, scaffold hopping and shape similarity matching. The designed compounds were synthesized in 2-3 steps with simple chemistry and screened by ovine cyclooxygenases (COXs) inhibitory assay and carrageenan-induced rat paw edema assay. Among the screened compounds, two compounds exhibited 100% cyclooxygenase-2 (COX-2) inhibitory potency without showing cycloxygenase-1 (COX-1) inhibition at 20 μM.

View Article and Find Full Text PDF

The incretin based therapies are an emerging class of antidiabetic drugs, with two categories: one is glucagone like peptide-1 (GLP-1) agonists and the other one is dipeptidyl peptidase (CD26; DPP-IV) inhibitors. However, in the DPP-IV inhibitors category only few compounds are commercially available and also have some undesirable effects. Therefore, in the present work we tried to explore a naturally occurring compound naringin for its potential DPP-IV inhibition and antidiabetic potential.

View Article and Find Full Text PDF

In our effort to identify potent gastric sparing anti-inflammatory agents, a series of methyl sulfanyl/methyl sulfonyl substituted 2,3-diaryl quinazolinones were designed by analogue-based design strategy and synthesized for biological evaluation. Subsequently, the compounds were evaluated for both cyclooxygenase inhibitions by ovine COX assay and carrageenan-induced rat paw edema assay. All the methyl sulfonyl substituted quinazolinones were exhibited promising anti-inflammatory activity.

View Article and Find Full Text PDF

Cyclooxygenase inhibitory and selectivity profile of a combined series of thirty one aryl sulphonamide compounds possessing 4-benzylideneamino or 4-phenyliminomethyl scaffolds were subjected to QSAR study using Hansch approach. The compounds in the selected series were characterized using classical aromatic substituent constants like hydrophobicity (pi), molar refractivity (MR), Hammett electronic (sigma), electronic field effect (F), resonance effect (R), and some indicator variables encoding molecular group contributions. Statistically significant QSAR models were generated using multiple regression analysis and cross-validation tools.

View Article and Find Full Text PDF

Binding to the extracellular matrix, one of the most abundant human protein complexes, significantly affects drug disposition. Specifically, the interactions with extracellular matrix determine the free concentrations of small molecules acting in tissues, including signaling peptides, inhibitors of tissue remodeling enzymes such as matrix metalloproteinases, and other drug candidates. The nature of extracellular matrix binding was elucidated for 63 matrix metalloproteinase inhibitors, for which the association constants to an extracellular matrix mimic were reported here.

View Article and Find Full Text PDF

Characterization of interactions with phospholipids is an integral part of the in vitro profiling of drug candidates because of the roles the interactions play in tissue accumulation and passive diffusion. Currently used test systems may inadequately emulate the bilayer core solvation properties (immobilized artificial membranes [IAM]), suffer from potentially slow transport of some chemicals (liposomes in free or immobilized forms), and require a tedious separation (if used for free liposomes). Here the authors introduce a well-defined system overcoming these drawbacks: nonporous octadecylsilica particles coated with a self-assembled phospholipid monolayer.

View Article and Find Full Text PDF

Quantitative structure-activity relationship (QSAR) studies have been performed on a combined series of 2-sulfonylphenyl-3-phenyl-indoles and 2-phenyl-3-sulfonylphenyl-indoles with a common 2,3 vicinal diaryl indole scaffold, recently reported as selective COX-2 inhibitors. This study is aimed to throw light on this, special class of diaryl heterocyclic family of selective COX-2 inhibitors. A preliminary Fujita-Ban analysis on 32 compounds provided valuable insights about the role of different substituents R1 and R2 around the 2,3 vicinal diaryl rings and R3, at position-5 of the central indole moiety in explaining their in vitro COX-2 inhibitory activity.

View Article and Find Full Text PDF

A quantitative attempt has been made to correlate the structure-activity relationship (SAR) among the recently reported 6-amino-4-phenyltetrahydroquinoline derivatives as antagonists for the Gs-protein-coupled human follicle-stimulating hormone (FSH) receptor. The compounds used for the present study have been reported to show high antagonistic efficacy in vitro using a CHO-hFSHR(luc) assay. Our QSAR investigations revealed a hydrophobic type of interactions between these ligands and the FSH receptor, hence confirming the presence of a lipophilic pocket on the active site of the target structure.

View Article and Find Full Text PDF

As a part of our continuing efforts in discerning the structural and physicochemical requirements for selective COX-2 over COX-1 inhibition among the fused pyrazole ring systems, herein we report the QSAR analyses of the title compounds. The conformational flexibility of the title compounds was examined using a simple connection table representation. The conformational investigation was aided by calculating a connection table parameter called fraction of rotable bonds, b_rotR encompassing the number of rotable bonds and b_count, the number of bonds including implicit hydrogens of each ligand.

View Article and Find Full Text PDF

QSAR analysis based on classical Hansch approach was adopted on two recently reported novel series of 2-phenylpyran-4-ones as selective cyclooxygenase-2 (COX-2) inhibitors. The 6-methyl derivatives of title compounds bifurcate as 3-phenoxypyran-4-ones (subset A) and 3-phenylpyran-4-ones (subset B) among series 1. Series 2 consists of 5-chloro derivatives of title compounds.

View Article and Find Full Text PDF