Publications by authors named "Manithody C"

Unlabelled: The domestication of cattle provided Propionibacteriaceae the opportunity to adapt to human skin. These bacteria constitute a distinct genus ( ), and a single species within that genus ( ) dominates 25% of human skin. protects humans from pathogen colonization, but it can also infect indwelling medical devices inserted through human skin.

View Article and Find Full Text PDF
Article Synopsis
  • Total parenteral nutrition (TPN) is a lifesaving IV feeding method but can cause serious side effects like gut microbial changes and liver injury.
  • A study involving 31 piglets tested the effects of transferring fecal microbiota from healthy pigs to those on TPN, with various groups including a control, TPN alone, TPN with antibiotics, and TPN with fecal transplant.
  • The results showed that fecal microbiota transplant (FMT) helped prevent gut atrophy, liver injury, and harmful microbial changes seen in TPN, suggesting that gut microbes could be critical for developing new treatments.
View Article and Find Full Text PDF
Article Synopsis
  • Social Determinants of Health (SDOH) significantly impact health outcomes, with five key domains being Economic Stability, Education Access, Health Care Quality, Neighborhood Environment, and Social Context, which together can affect children's health across generations.
  • Adverse SDOH can lead to serious issues like food insecurity, malnutrition, chronic illnesses, and lower life expectancy, particularly harming children who are more vulnerable.
  • The proposed solution includes a comprehensive Surveillance, Screening, Referral, and Reevaluation (SSRR) plan focusing on nutrition and food insecurity, advocating for better access to healthy food and utilizing Food Prescription Programs tailored specifically for children's needs.
View Article and Find Full Text PDF

Short bowel syndrome (SBS) is a condition that results from a reduction in the length of the intestine or its functional capacity. SBS patients can have significant side effects and complications, the etiology of which remains ill-defined. Thus, facilitating intestinal adaptation in SBS remains a major research focus.

View Article and Find Full Text PDF

Background: Total Parenteral Nutrition (TPN) provides lifesaving nutritional support to patients unable to maintain regular enteral nutrition (EN). Unfortunately, cholestasis is a significant side effect affecting 20-40% of paediatric patients. While the aetiology of TPN-associated injury remains ill-defined, an altered enterohepatic circulation in the absence of gut luminal nutrient content during TPN results in major gut microbial clonal shifts, resulting in metabolic endotoxemia and systemic inflammation driving liver injury and cholestasis.

View Article and Find Full Text PDF

Background: Parenteral nutrition (PN) remains a critical therapeutic option in patients who cannot tolerate enteral feeding. However, although lifesaving, PN is associated with significant side effects, including liver injury, the etiology of which is multifactorial. Carbamazepine (CBZ), an antiepileptic medication, is known to modulate hepatic fibrosis and hepatocellular injury in a variety of liver diseases.

View Article and Find Full Text PDF

Background: Almost 9%of deceased donor livers are discarded as marginal donor livers (MDL) due to concern of severe ischemia reperfusion injury (IRI). Emerging data supports ferroptosis (iron regulated hepatocellular death) as an IRI driver, however lack of robust preclinical model limits therapeutic testing. In this manuscript we describe the development of a novel rigorous internal control system utilizing normothermic perfusion of split livers to test ferroptosis regulators modulating IRI.

View Article and Find Full Text PDF

There are no data evaluating the microbiome in congenital heart disease following cardiopulmonary bypass. The authors evaluated patients with congenital heart disease undergoing cardiopulmonary bypass and noncardiac patients undergoing surgery without bypass. Patients with congenital heart disease had differences in baseline microbiome compared with control subjects, and this was exacerbated following surgery with bypass.

View Article and Find Full Text PDF

Parenteral nutrition (PN) is a life-saving nutritional therapy for those situations when patients are unable to receive enteral nutrition. However, despite a multitude of benefits offered by PN, it is associated with a variety of side effects, most notably parenteral nutrition-associated liver disease (PNALD). Adverse effects of PN on other organ systems, such as brain and cardiovascular system, have been poorly studied.

View Article and Find Full Text PDF

Total Parenteral Nutrition (TPN) is a life-saving therapy where all nutritional requirements are provided intravenously. While this therapy is essential for individuals unable to process their nutritional needs enterically, significant complications arise such as intestinal failure associated liver injury (IFALD). IFALD includes hepatic steatosis, cholestasis, inflammation, ultimately progressing to cirrhosis and portal hypertension and some patients may need liver transplantation.

View Article and Find Full Text PDF

Background: Total parenteral nutrition (TPN) provides all nutritional needs intravenously. Although lifesaving, enthusiasm is significantly tempered due to side effects of liver and gut injury, as well as lack of mechanistic understanding into drivers of TPN injury. We hypothesized that the state of luminal nutritional deprivation with TPN drives alterations in gut-systemic signaling, contributing to injury, and tested this hypothesis using our ambulatory TPN model.

View Article and Find Full Text PDF

Short bowel syndrome is associated with significant comorbidities and mortality. This study is important as unlike current systems, it provides a validated piglet model which mirrors anatomical, histological, and serological characteristics observed in human SBS. This model can be used to advance knowledge into mechanistic pathways and therapeutic modalities to improve outcomes for SBS patients.

View Article and Find Full Text PDF

Parenteral nutrition (PN) has revolutionized the care of patients with intestinal failure by providing nutrition intravenously. Worldwide, PN remains a standard tool of nutrition delivery in neonatal, pediatric, and adult patients. Though the benefits are evident, patients receiving PN can suffer serious cholestasis due to lack of enteral feeding and sometimes have fatal complications from liver injury and gut atrophy, including PN-associated liver disease or intestinal failure-associated liver disease.

View Article and Find Full Text PDF

Background: Short bowel syndrome (SBS) results from extensive bowel resection. Patients with SBS require total parenteral nutrition (TPN) for survival. Understanding mechanisms contributing to TPN-associated liver injury and gut atrophy are critical in developing SBS therapies.

View Article and Find Full Text PDF

For decades, parenteral nutrition (PN) has been a successful method for intravenous delivery of nutrition and remains an essential therapy for individuals with intolerance of enteral feedings or impaired gut function. Although the benefits of PN are evident, its use does not come without a significant risk of complications. For instance, parenteral nutrition-associated liver disease (PNALD)-a well-described cholestatic liver injury-and atrophic changes in the gut have both been described in patients receiving PN.

View Article and Find Full Text PDF

Background: Parenteral nutrition (PN) provides nutrition intravenously; however, this life-saving therapy is associated with significant liver disease. Recent evidence indicates improvement in PN-associated injury in animals with intact gut treated with enteral bile acid (BA), chenodeoxycholic acid (CDCA), and a gut farnesoid X receptor (FXR) agonist, which drives the gut-liver cross talk (GLCT). We hypothesized that similar improvement could be translated in animals with short bowel syndrome (SBS).

View Article and Find Full Text PDF

We recently identified two hemophilia B patients who carried Gly-317 to Arg (FIX-G317R) or Gly-317 to Glu (FIX-G317E) substitutions in their FIX gene. The former mutation caused severe and the latter moderate bleeding in afflicted patients. To understand the molecular basis for the variable clinical manifestation of Gly-317 mutations, we prepared recombinant G317R and G317E derivatives of FIX and compared their kinetic properties to those of recombinant wild-type FIX in appropriate assay systems.

View Article and Find Full Text PDF

Antithrombin (AT) is a protein of the serpin superfamily involved in regulation of the proteolytic activity of the serine proteases of the coagulation system. AT is known to exhibit anti-inflammatory and cardioprotective properties when it binds to heparan sulfate proteoglycans (HSPGs) on vascular cells. AMP-activated protein kinase (AMPK) plays an important cardioprotective role during myocardial ischaemia and reperfusion (I/R).

View Article and Find Full Text PDF

Factor X (FX) is a vitamin K-dependent plasma zymogen, which following activation to factor Xa (FXa), converts prothrombin to thrombin in the blood clotting cascade. It was recently demonstrated that a natural variant of FX carrying the Asp-185 deletion (FX-D185del, chymotrypsinogen numbering) was associated with mild bleeding in a patient with severe FX deficiency. In this study, we expressed FX-D185del in mammalian cells and characterized its properties in appropriate kinetic assays in purified systems.

View Article and Find Full Text PDF

Background: Protein Z (PZ) has been reported to promote the inactivation of factor Xa (FXa) by PZ-dependent protease inhibitor (ZPI) by about three orders of magnitude. Previously, we prepared a chimeric PZ in which its C-terminal pseudo-catalytic domain was grafted on FX light-chain (Gla and EGF-like domains) (PZ/FX-LC). Characterization of PZ/FX-LC revealed that the ZPI interactive-site is primarily located within PZ pseudo-catalytic domain.

View Article and Find Full Text PDF

The extracellular nuclear proteins, histone H4 (H4) and high mobility group box 1 (HMGB1), released by injured cells during the activation of inflammation and coagulation pathways provoke potent inflammatory responses through interaction with pathogen-related pattern recognition receptors (ie, Toll-like receptors [TLRs] and receptor for advanced glycation end products [RAGE]) present on vascular and innate immune cells. Inorganic polyphosphate (polyP) has emerged as a key modulator of coagulation and inflammation. Here, we demonstrate that polyP binds to both H4 and HMGB1 with high affinity, thereby dramatically potentiating their proinflammatory properties in cellular and in vivo models.

View Article and Find Full Text PDF

Background: Antithrombin (AT) is a plasma serpin inhibitor that regulates the proteolytic activity of procoagulant proteases of the clotting cascade. In addition to its anticoagulant activity, AT also possesses potent anti-inflammatory properties.

Objectives: The objective of this study was to investigate the anti-inflammatory activity of wild-type AT (AT-WT) and a reactive centre loop mutant of AT (AT-RCL) which is not capable of inhibiting thrombin.

View Article and Find Full Text PDF

Basic residues contained in the 39-, 60-, and 70-80-loops of activated protein C (APC) comprise an exosite that contributes to the binding and subsequent proteolytic inactivation of factor (F) VIIIa. Surface plasmon resonance (SPR) showed that WT APC bound to FVIII light chain (LC) and the FVIIIa A1/A3C1C2 dimer with equivalent affinity (Kd = 525 and 546 nM, respectively). These affinity values may reflect binding interactions to the acidic residue-rich a1 and a3 segments adjacent to A1 domain in the A1/A3C1C2 and A3 domain in LC, respectively.

View Article and Find Full Text PDF

Background: Modulation of energy substrate metabolism may constitute a novel therapeutic intervention against ischemia/reperfusion (I/R) injury. AMP-activated protein kinase (AMPK) has emerged as a key regulator of favorable metabolic signaling pathways in response to myocardial ischemia. Recently, we demonstrated that activated protein C (APC) is cardioprotective against ischemia/reperfusion (I/R) injury by augmenting AMPK signaling.

View Article and Find Full Text PDF

Recent results have indicated that factor Xa (FXa) cleaves protease-activated receptor 2 (PAR-2) to elicit protective intracellular signaling responses in endothelial cells. In this study, we investigated the molecular determinants of the specificity of FXa interaction with PAR-2 by monitoring the cleavage of PAR-2 by FXa in endothelial cells transiently transfected with a PAR-2 cleavage reporter construct in which the extracellular domain of the receptor was fused to cDNA encoding for alkaline phosphatase. Comparison of the cleavage efficiency of PAR-2 by a series of FXa mutants containing mutations in different surface loops indicated that the acidic residues of 39-loop (Glu-36, Glu-37, and Glu-39) and the basic residues of 60-loop (Lys-62 and Arg-63), 148-loop (Arg-143, Arg-150, and Arg-154), and 162-helix (Arg-165 and Lys-169) contribute to the specificity of receptor recognition by FXa on endothelial cells.

View Article and Find Full Text PDF