Multicellular spheroids provide a physiologically relevant platform to study the microenvironment of tumors and therapeutic applications, such as microparticle-based drug delivery. The goal of this study was to investigate the incorporation/penetration of compliant polyacrylamide microparticles (MPs), into either cancer or normal human cell spheroids. Incorporation of collagen-1-coated MPs (stiffness: 0.
View Article and Find Full Text PDFIntroduction: Reconstruction of respiratory epithelium is critical for the fabrication of bioengineered airway implants. Epithelial differentiation is typically achieved using bovine pituitary extract (BPE). Due to the xenogenic nature and undefined composition of BPE, an alternative for human clinical applications, devoid of BPE, must be developed.
View Article and Find Full Text PDFUnderstanding the role of mechanophenotype in competitive adherence of cells to other cells versus underlying substrates can inform such processes as tissue development, cancer progression, and wound healing. This study investigated how mechanophenotype, defined by whole-cell, elastic/viscoelastic properties for the perinuclear region, and cellular assembly are intertwined through the mechanosensing process. Atomic force microscopy was used to characterize the temporal elastic/viscoelastic properties of individual and assembled fibroblasts grown on substrates with elastic moduli above, below, or similar to whole-cell mechanophenotypes measured for three, genetically modified cell lines.
View Article and Find Full Text PDF